Advertisement

An Update on Bioactive Natural Products from Endophytic Fungi of Medicinal Plants

  • Nisha Sharma
  • Vishal Sharma
  • Vidushi Abrol
  • Anil Panghal
  • Sundeep JaglanEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 28)

Abstract

Pathogens are developing resistance against the current regime of drugs, which urge the need of novel drugs. This has led scientists to explore natural sources that are safe as well as potent. Microbes have been explored for over decades for natural products and have been the vast reservoir of secondary metabolites of drugs potential. Because of their huge diversity and particular habituation, they can act as good resource to obtain bioactive secondary metabolites. Endophytes have been exploited to get drug-like molecules that have antibacterial, antifungal, anticancer, antioxidant, antidiabetic, antileishmaniasis, and antiviral activities. Here we review endophytic fungi as storehouse of naturally occurring bioactive secondary metabolites.

Keywords

Endophytic fungi Natural products Bioactive metabolites· antimicrobial Antioxidant Anticancer Antifungal Antibacterial Antiviral Medicinal plants 

Notes

Acknowledgements

Sundeep Jaglan acknowledges SERB, DST, Govt. of India (Grant No. ECR/2017/001381), and the Council of Scientific and Industrial Research (CSIR), New Delhi, India (Grant No. MLP-1009), for providing financial support. Nisha Sharma thankfully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing research fellowship during Ph.D.

References

  1. Abdou R, Abdelhady MI (2015) Anticancer endophytic metabolites of the medicinal plant Centaurea stoebe. World J Pharm Pharm Sci 4:220–230Google Scholar
  2. Arora D, Sharma N, Singamaneni V, Sharma V, Kushwaha M, Abrol V, Guru S, Sharma S, Gupta AP, Bhushan S (2016) Isolation and characterization of bioactive metabolites from Xylaria psidii, an endophytic fungus of the medicinal plant Aegle marmelos and their role in mitochondrial dependent apoptosis against pancreatic cancer cells. Phytomedicine 23:1312–1320.  https://doi.org/10.1016/j.phymed.2016.07.004 CrossRefGoogle Scholar
  3. Bascom-Slack CA, Ma C, Moore E, Babbs B, Fenn K, Greene JS, Hann BD, Keehner J, Kelley-Swift EG, Kembaiyan V, Lee SJ, Li P, Light DY, Lin EH, Schorn MA, Vekhter D, Boulanger LA, Hess WM, Vargas PN, Strobel GA, Strobel SA (2009) Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rain forests. Microb Ecol 58:374–383.  https://doi.org/10.1007/s00248-009-9494-z CrossRefGoogle Scholar
  4. Bashyal BP, Wellensiek BP, Ramakrishnan R, Faeth SH, Ahmad N, Gunatilaka AA (2014) Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorg Med Chem 22:6112–6116.  https://doi.org/10.1016/j.bmc.2014.08.039 CrossRefGoogle Scholar
  5. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37.  https://doi.org/10.1016/j.copbio.2013.09.012 CrossRefGoogle Scholar
  6. Chapla VM, Zeraik ML, Leptokarydis IH, Silva GH, Bolzani VS, Young MC, Pfenning LH, Araújo AR (2014) Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca. Molecules 19:19243–19252.  https://doi.org/10.3390/molecules191119243 CrossRefGoogle Scholar
  7. Dame ZT, Silima B, Gryzenhout M, van Ree T (2016) Bioactive compounds from the endophytic fungus Fusarium proliferatum. Nat Prod Res 30:1301–1304.  https://doi.org/10.1080/14786419.2015.1053089 CrossRefGoogle Scholar
  8. Darsih C, Prachyawarakorn V, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2015) Cytotoxic metabolites from the endophytic fungus Penicillium chermesinum: discovery of a cysteine-targeted Michael acceptor as a pharmacophore for fragment-based drug discovery, bioconjugation and click reactions. RSC Adv 5:70595–70603.  https://doi.org/10.1039/C5RA13735G CrossRefGoogle Scholar
  9. de Felício R, Pavao GB, de Oliveira ALL, Erbert C, Conti R, Pupo MT, Furtado NAJC, Ferreira EG, Lotufo LVC, Young MCM, Yokoya NS, Debonsi HM (2015) Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Rev Bras Farmacogn 25:641–650.  https://doi.org/10.1016/j.bjp.2015.08.003 CrossRefGoogle Scholar
  10. Deshidi R, Devari S, Kushwaha M, Gupta AP, Sharma R, Chib R, Khan IA, Jaglan S, Shah BA (2017) Isolation and quantification of alternariols from endophytic fungus, Alternaria alternata: LC-ESI-MS/MS analysis. Chem Select 2:364–368.  https://doi.org/10.1002/slct.201601649 CrossRefGoogle Scholar
  11. Dudeja S, Giri R, Saini R, Suneja MP, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260.  https://doi.org/10.1002/jobm.201100063 CrossRefGoogle Scholar
  12. Dzoyem JP, Melong R, Tsamo AT, Maffo T, Kapche DGWF, Ngadjui BT, McGaw LJ, Eloff JN (2017) Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Rev Rev Bras Farmacogn 27:251–253.  https://doi.org/10.1016/j.bjp.2016.08.0110102-695X CrossRefGoogle Scholar
  13. Elkhayat ES, Goda AM (2017) Antifungal and cytotoxic constituents from the endophytic fungus Penicillium sp. Bull Fac Pharm Cairo Univ 55:85–89.  https://doi.org/10.1016/j.bfopcu.2017.03.001 CrossRefGoogle Scholar
  14. Elkhayat ES, Ibrahim SR, Mohamed GA, Ross SA (2016) Terrenolide S, a new antileishmanial butenolide from the endophytic fungus Aspergillus terreus. Nat Prod Res 30:814–820.  https://doi.org/10.1080/14786419.2015.1072711 CrossRefGoogle Scholar
  15. Gao H, Li G, Lou H-X (2018) Structural diversity and biological activities of novel secondary metabolites from endophytes. Molecules 23:646.  https://doi.org/10.3390/molecules23030646 CrossRefGoogle Scholar
  16. Gasong BT, Tjandrawinata RR (2016) Production of secondary metabolite E2. 2 from Phaleria macrocarpa endophytic fungus. Asian Pac J Trop Biomed 6:881–885.  https://doi.org/10.1016/j.apjtb.2016.01.005 CrossRefGoogle Scholar
  17. Goutam J, Sharma G, Tiwari VK, Mishra A, Kharwar RN, Ramaraj V, Koch B (2017) Isolation and characterization of “Terrein” an antimicrobial and antitumor compound from endophytic fungus Aspergillus terreus (JAS-2) associated from Achyranthes aspera Varanasi, India. Front Microbiol l8(1334).  https://doi.org/10.3389/fmicb.2017.01334
  18. Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509.  https://doi.org/10.1021/np058128n CrossRefGoogle Scholar
  19. Hani M, Eman H (2015) Anticancer compounds from Chaetomium globosum. Biochem Anal Biochem 4(1).  https://doi.org/10.4172/2161-1009.1000174
  20. Haque MA et al (2005) Isolation of bioactive secondary metabolites from the endophytic fungus of Ocimum basilicum. J Pharm Sci 4:127–130Google Scholar
  21. Hewage RT, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2014) One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry 108:87–94.  https://doi.org/10.1016/j.phytochem.2014.09.013 CrossRefGoogle Scholar
  22. Hsiao Y, Chang H-S, Ta-Wei L, Sung-Yuan H, Gwo-Fang Y, Ming-Jen C, Chen I-S (2016) Secondary metabolites and bioactivity of the endophytic fungus Phomopsis theicola from Taiwanese endemic plant. Rec Nat Prod 10:189Google Scholar
  23. Hu X, Li W, Yuan M, Li C, Liu S, Jiang C, Wu Y, Cai K, Liu Y (2016) Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li. World J Microbiol Biotechnol 32:1–9.  https://doi.org/10.1007/s11274-016-2073-9 CrossRefGoogle Scholar
  24. Hussain H et al (2014) Antimicrobial constituents from three endophytic fungi. Asian Pac J Trop Med 7:S224–S227.  https://doi.org/10.1016/S1995-7645(14)60236-4 CrossRefGoogle Scholar
  25. Jouda J-B, Mbazoa CD, Douala-Meli C, Sarkar P, Bag PK, Wandji J (2016) Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in Garcinia kola (Heckel) nut. BMC Complement Altern Med 16:462.  https://doi.org/10.1186/s12906-016-1454-9 CrossRefGoogle Scholar
  26. Kajula M, Ward JM, Turpeinen A, Tejesvi MV, Hokkanen J, Tolonen A, Häkkänen H, Picart P, Ihalainen J, Sahl HG, Pirttila AM, Mattila S (2016) Bridged epipolythiodiketopiperazines from Penicillium raciborskii, an endophytic fungus of Rhododendron tomentosum Harmaja. J Nat Prod 79:685–690.  https://doi.org/10.1021/np500822k CrossRefGoogle Scholar
  27. Khan MIH, Sohrab MH, Rony SR, Tareq FS, Hasan CM, Mazid MA (2016) Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp. Toxicol Rep 3:861–865.  https://doi.org/10.1016/j.toxrep.2016.10.005 CrossRefGoogle Scholar
  28. Koizumi F, Hasegawa A, Ando K, Ogawa T, Hara M (2001) Jpn Kokai Tokkyo Koho. JP 2001147574 A2 200109Google Scholar
  29. Kudo T, Matsushima K, Itoh T, Sasaki J, Suzuki K (1998) Description of four new species of the genus Kineosporia: Kineosporia succinea sp. nov., Kineosporia rhizophila sp. nov., Kineosporia mikuniensis sp. nov. and Kineosporia rhamnosa sp. nov., isolated from plant samples, and amended description of the genus Kineosporia. Int J Syst Bacteriol 48:1245–1255.  https://doi.org/10.1099/00207713-48-4-1245 CrossRefGoogle Scholar
  30. Kumala S, Yuliani KD, Simanjuntak P (2015) Antimicrobial activity of secondary metabolites produced by endophytic fungi isolated from stems of jati tree (tectona grandis lf). Int J Pharm Sci Res 6:2349.  https://doi.org/10.13040/IJPSR.0975-8232.6(6).2349-53 CrossRefGoogle Scholar
  31. Kuriakose GC, Palem PP, Jayabaskaran C (2016) Fungal vincristine from Eutypella spp-CrP14 isolated from Catharanthus roseus induces apoptosis in human squamous carcinoma cell line-A431. BMC Complement Altern Med 16:302.  https://doi.org/10.1186/s12906-016-1299-2 CrossRefGoogle Scholar
  32. Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775.  https://doi.org/10.1021/np1008398 CrossRefGoogle Scholar
  33. Lenta BN, Ngatchou J, Frese M, Ladoh-Yemeda F, Voundi S, Nardella F, Michalek C, Wibberg D, Ngouela S, Tsamo E, Kaiser M, Kaliowski J, Sewald N (2016) Purpureone, an antileishmanial ergochrome from the endophytic fungus Purpureocillium lilacinum. Z NaturforschB 71:1159–1167.  https://doi.org/10.1515/znb-2016-0128 CrossRefGoogle Scholar
  34. Li X, Guo Z, Deng Z, Yang J, Zou K (2015a) A new [alpha]-pyrone derivative from endophytic fungus Pestalotiopsis microspora. Rec Nat Prod 9:503.  https://doi.org/10.1007/s12010-014-1422-0 CrossRefGoogle Scholar
  35. Li Y, Yang J, Zhou X, Zhao W, Jian Z (2015b) Isolation and identification of a 10-deacetyl baccatin-III-producing endophyte from Taxus wallichiana. Appl Biochem Biotechnol 175:2224–2231.  https://doi.org/10.1007/s12010-014-1422-0 CrossRefGoogle Scholar
  36. Li CS, Ren G, Yang BJ, Miklossy G, Turkson J, Fei P, Ding Y, Walker LA, Cao S (2016) Meroterpenoids with antiproliferative activity from a Hawaiian-plant associated fungus Peyronellaea coffeae-arabicae FT238. Org Lett 18:2335–2338.  https://doi.org/10.1021/acs.orglett.6b00685 CrossRefGoogle Scholar
  37. Liang Z, Zhang J, Zhang X, Li J, Zhang X, Zhao C (2015) Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces Podophyllotoxin. J Chrom Sci 54:175–178.  https://doi.org/10.1093/chromsci/bmv124 CrossRefGoogle Scholar
  38. Liu XD, Xu Y (2008) A novel raw starch digesting α-amylase from a newly isolated Bacillussp. YX-1: pur charact. Bioresour Technol 99:4315–4320.  https://doi.org/10.1016/j.biortech.2007.08.040 CrossRefGoogle Scholar
  39. Liu K, Ding X, Deng B, Chen W (2010) 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotechnol Lett 32:689–693.  https://doi.org/10.1007/s10529-010-0201-4 CrossRefGoogle Scholar
  40. Lou J, Yu R, Wang X, Mao Z, Fu L, Liu Y, Zhou L (2016) Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities. Braz J Microbiol 47:96–101.  https://doi.org/10.1016/j.bjm.2015.11.004 CrossRefGoogle Scholar
  41. Malmstrøm J, Christophersen C, Frisvad JC (2000) Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. Phytochemistry 54:301–309.  https://doi.org/10.1016/S0031-9422(00)00106-0 CrossRefGoogle Scholar
  42. Mandavid H, Rodrigues AM, Espindola LS, Eparvier V, Stien D (2015) Secondary metabolites isolated from the amazonian endophytic fungus Diaporthe sp. SNB-GSS10. J Nat Prod 78:1735–1739.  https://doi.org/10.1021/np501029s CrossRefGoogle Scholar
  43. Metwaly AM, Ghoneim MM, Musa A (2015) Two new antileishmanial diketopiperazine alkaloids from the endophytic fungus Trichosporum sp. Der Pharma Chem 7:322–327Google Scholar
  44. Mishra P, Verekar S, Kulkarni-Almeida A, Roy S (2013) Anti-inflammatory and anti-diabetic naphthaquinones from an endophytic fungus Dendryphion nanum (Nees) S. Hughes. Indian J Chem 52B:565–567Google Scholar
  45. Musavi SF, Dhavale A, Balakrishnan RM (2015) Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Prep Biochem Biotechnol 45:158–172.  https://doi.org/10.1016/j.biortech.2014.12.106 CrossRefGoogle Scholar
  46. Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:250693.  https://doi.org/10.1155/2014/250693 CrossRefGoogle Scholar
  47. Naureen H, Asker MMS, Shaaban M (2015) Structural elucidation and bioactivity studies of secondary metabolites from endophytic Aspergillus niger. Indian J Appl Res 5:76–83.  https://doi.org/10.15373/2249555X CrossRefGoogle Scholar
  48. Page M, Landry N, Boissinot M, Helie M-C, Harvey M, Gagne M (2000) Bacterial mass production of taxanes and paclitaxel. US Patent, US6030818 A, 29 feb 2000Google Scholar
  49. Pastre R, Marinho AM, Rodrigues-Filho E, Souza AQ, Pereira JO (2007) Diversity of polyketides produced by Penicillium species isolated from Melia azedarach and Murraya paniculata. Quim Nova 30:1867–1871.  https://doi.org/10.1590/S0100-40422007000800013 CrossRefGoogle Scholar
  50. Pereira CB, de Oliveira DM, Hughes AFS, Kohlhoff M, LA Vieira M, Martins Vaz AB, Ferreira MC, Carvalho CR, Rosa LH, Rosa CA, Alves TM, Zani CL, Johann S, Cota BB (2015) Endophytic fungal compounds active against Cryptococcus neoformans and C. gattii. J Antibiot 68:436.  https://doi.org/10.1038/ja.2015.11 CrossRefGoogle Scholar
  51. Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:1–11.  https://doi.org/10.4061/2011/576286 CrossRefGoogle Scholar
  52. Prihantini AI, Tachibana S (2017) Antioxidant compounds produced by Pseudocercospora sp. ESL 02, an endophytic fungus isolated from Elaeocarpus sylvestris. Asian Pac J Trop Biomed 7:110–115.  https://doi.org/10.1016/j.apjtb.2016.11.020 CrossRefGoogle Scholar
  53. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375.  https://doi.org/10.1007/s00253-013-5163-8 CrossRefGoogle Scholar
  54. Qader M, Kumar N, Jayasinghe L, Fujimoto Y (2015) Production of antitumor antibiotic GKK1032B by Penicillium citrinum, an endophytic fungus isolated from Garcinia mangostana fruits. Med Aromat Plants 5:225.  https://doi.org/10.4172/2167-0412.100022 CrossRefGoogle Scholar
  55. Qin S, Wang H-B, Chen H-H, Zhang Y-Q, Jiang C-L, Xu L-H, Li W-J (2008) Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 58:2525–2528.  https://doi.org/10.1099/ijs.0.2008/000398-0 CrossRefGoogle Scholar
  56. Qin S, Chen H-H, Klenk H-P, Kim C-J, Xu L-H, Li W-J (2010) Saccharopolyspora gloriosae sp. nov., an endophytic actinomycete isolated from the stem of Gloriosa superba L. Int J Syst Evol Microbiol 60:1147–1151.  https://doi.org/10.1099/ijs.0.015792-0 CrossRefGoogle Scholar
  57. Rathod D, Dar M, Gade A, Rai M (2014) Griseofulvin producing endophytic Nigrospora oryzae from Indian Emblica officinalis Gaertn: a new report. Austin J Biotechnol Bioeng 1:5Google Scholar
  58. Ratnaweera PB, de Silva ED, Williams DE, Andersen RJ (2015) Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement Altern Med 15:220.  https://doi.org/10.1186/s12906-015-0722-4 CrossRefGoogle Scholar
  59. Rivera-Chávez J, González-Andrade M, del Carmen González M, Glenn AE, Mata R (2013) Thielavins A, J and K: α-glucosidase inhibitors from MEXU 27095, an endophytic fungus from Hintonia latiflora. Phytochemistry 94:198–205.  https://doi.org/10.1016/j.phytochem.2013.05.021 CrossRefGoogle Scholar
  60. Shaaban M, Nasr H, Hassan AZ, Asker MS (2013) Bioactive secondary metabolites from endophytic Aspergillus fumigatus: structural elucidation and bioactivity studies. Rev Latinoam Quim 41:50–60Google Scholar
  61. Sharma N, Kushwaha M, Arora D, Jain S, Singamaneni V, Sharma S, Shankar R, Bhushan S, Gupta P, Jaglan S (2018) New cytochalasin from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck. J Appl Microbiol 125(1):111–120.  https://doi.org/10.1111/jam.13764 CrossRefGoogle Scholar
  62. Shentu X, Zhan X, Ma Z, Yu X, Zhang C (2014) Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz J Microbiol 45:248–254.  https://doi.org/10.1590/S1517-83822014005000036 CrossRefGoogle Scholar
  63. Shimizu M, Furumai T, Igarashi Y, Onaka H, Nishimura T, Yoshida R, Kunoh H (2001) Association of induced disease resistance of rhododendron seedlings with inoculation of Streptomyces sp. R-5 and treatment with actinomycin D and amphotericin B to the tissue-culture medium. J Antibiot 54:501–505.  https://doi.org/10.7164/antibiotics.54.501 CrossRefGoogle Scholar
  64. Silva MO, Kawai K, Hosoe T, Takaki GC, Gusmão NB, Fukushima K (2013) Viriditoxin, an antibacterial substance produced by mangrove endophytic fungus Paecilomyces variotii. Microbial pathogens and strategies for combating them: science, technology and education (A Méndez-Vilas, Ed):85–100Google Scholar
  65. Singh B, Kaur A (2016) Antidiabetic potential of a peptide isolated from an endophytic Aspergillus awamori. J Appl Microbiol 120:301–311.  https://doi.org/10.1111/jam.12998 CrossRefGoogle Scholar
  66. Sousa J, Aguilar Pérez M, Arnold A, Rios N, Coley P, Kursar T, Cubilla Rios L (2016) Chemical constituents and their antibacterial activity from the tropical endophytic fungus Diaporthe sp. F2934. J Appl Microbiol 120:1501–1508.  https://doi.org/10.1111/jam.13132 CrossRefGoogle Scholar
  67. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216.  https://doi.org/10.1126/science.8097061 CrossRefGoogle Scholar
  68. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess W (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142:435–440.  https://doi.org/10.1099/13500872-142-2-435 CrossRefGoogle Scholar
  69. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459.  https://doi.org/10.1039/B100918O CrossRefGoogle Scholar
  70. Taware R, Abnave P, Patil D, Rajamohananan PR, Raja R, Soundararajan G, Kundu GC, Ahmad A (2014) Isolation, purification and characterization of Trichothecinol-A produced by endophytic fungus Trichothecium sp. and its antifungal, anticancer and antimetastatic activities. Sustain Chem Process 2:8.  https://doi.org/10.1186/2043-7129-2-8 CrossRefGoogle Scholar
  71. Tayung K, Barik B, Jha D, Deka D (2011) Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere 2:203–213Google Scholar
  72. Uesugi S, Fujisawa N, Yoshida J, Watanabe M, Dan S, Yamori T, Shiono Y, Kimura K (2016) Pyrrocidine A, a metabolite of endophytic fungi, has a potent apoptosis-inducing activity against HL60 cells through caspase activation via the Michael addition. J Antibiot 69:133.  https://doi.org/10.1038/ja.2015.103 CrossRefGoogle Scholar
  73. Uzor PF, Odimegwu DC, Ebrahim W, Osadebe PO, Nwodo NJ, Okoye FB, Liu Z, Proksch P (2016) Anti-respiratory syncytial virus compounds from two endophytic fungi isolated from nigerian medicinal plants. Drug Res 66:527–531.  https://doi.org/10.1055/s-0042-111008 CrossRefGoogle Scholar
  74. Uzor PF, Osadebe PO, Nwodo NJ (2017) Antidiabetic activity of extract and compounds from an endophytic fungus Nigrospora oryzae. Drug Res 67:308–311.  https://doi.org/10.1055/s-0042-122777 CrossRefGoogle Scholar
  75. Venugopalan A, Srivastava S (2015) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour Technol 188:251–257.  https://doi.org/10.1016/j.biortech.2014.12.106 CrossRefGoogle Scholar
  76. Verekar SA, Mishra PD, Sreekumar ES, Deshmukh SK, Fiebig H-H, Kelter G, Maier A (2014) Anticancer activity of new depsipeptide compound isolated from an endophytic fungus. J Antibiot 67:697.  https://doi.org/10.1038/ja.2014.58 CrossRefGoogle Scholar
  77. Wang X, Radwan MM, Taráwneh AH, Gao J, Wedge DE, Rosa LH, Cutler HG, Cutler SJ (2013) Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. J Agric Food Chem 61:4551.  https://doi.org/10.1021/jf400212y CrossRefGoogle Scholar
  78. Wang W-X, Kusari S, Laatsch H, Golz C, Kusari P, Strohmann C, Kayser O, Spiteller M (2016) Antibacterial azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J Nat Prod 79:704–710.  https://doi.org/10.1021/acs.jnatprod.5b00436 CrossRefGoogle Scholar
  79. Wani MC, Taylor HL (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemia and antitumor agent from [the stem bark of] Taxus brevifolia. J Am Chem Soc 93:2325–2327.  https://doi.org/10.1021/ja00738a045 CrossRefGoogle Scholar
  80. Wibowo M, Prachyawarakorn V, Aree T, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2014) Tricyclic and spirobicyclic norsesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Eur J Org Chem 2014:3976–3980.  https://doi.org/10.1002/ejoc.201402262 CrossRefGoogle Scholar
  81. Xie J, Wu Y-Y, Zhang T-Y, Zhang M-Y, Zhu W-W, Gullen EA, Wang Z-J, Cheng Y-C, Zhang Y-X (2017) New and bioactive natural products from an endophyte of Panax notoginseng. RSC Adv 7:38100–38109.  https://doi.org/10.1039/c7ra07060h CrossRefGoogle Scholar
  82. Ye Y-q, Xia C-F, Yang J-X Qin Y, Zhou M, Gao X-M, Du G, Yang H-Y, Li X-M, Hu Q-F (2014) Isocoumarins from the fermentation products of an endophytic fungus of Aspergillus versicolor. Phytochem Lett 10:215–218.  https://doi.org/10.1016/j.phytol.2014.09.016 CrossRefGoogle Scholar
  83. Yin OCJ, Ibrahim D, Lee CC (2015) Bioactive compounds from Aspergillus terreus MP15, an endophytic fungus isolated from Swietenia Macrophylla leaf. Malay J Med Biol Res 2:262–272. https://doi:10.18034/mjmbr
  84. Zaher AM, Makboul MA, Moharram AM, Tekwani BL, Calderón AI (2015) A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda. J Antibiot 68:197.  https://doi.org/10.1038/ja.2014.129 CrossRefGoogle Scholar
  85. Zhang D, Tao X, Chen R, Liu J, Li L, Fang X, Yu L, Dai J (2015) Pericoannosin A, a polyketide synthase nonribosomal peptide synthetase hybrid metabolite with new carbon skeleton from the endophytic fungus Periconia sp. Org Lett 17:4304–4307.  https://doi.org/10.1021/acs.orglett.5b02123 CrossRefGoogle Scholar
  86. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res Technol Educ Trop Appl Microbiol Microb Biotechnol 1:567–576Google Scholar
  87. Zuck D (1998) Drugs prototypes and their exploitation. Anaesthesia 53:103–104.  https://doi.org/10.1111/j.1365-2044.1998.0345b.x CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nisha Sharma
    • 1
    • 2
  • Vishal Sharma
    • 1
    • 2
  • Vidushi Abrol
    • 1
  • Anil Panghal
    • 3
  • Sundeep Jaglan
    • 4
    Email author
  1. 1.Microbial Biotechnology DivisionCSIR-Indian Institute of Integrative MedicineJammuIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)JammuIndia
  3. 3.Lovely Professional UniversityPhagwaraIndia
  4. 4.CSIR - Indian Institute of Integrative MedicineJammuIndia

Personalised recommendations