Advertisement

Pharmacological Potential of Marine Microbes

  • Abhishek Pandey
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 28)

Abstract

The extensive growth of world population is a global issue, which has increased consumption of the existing resources as well as drugs. Therefore, there is a strong need for the search of new resources to develop safe and effective pharmaceuticals to fulfill increasing demand of the world population in order to combat various health ailments. Marine environments have diverse resources for the discovery of new drugs. Since a long time, various biological active compounds have been discovered from marine sources to prevent a wide range of diseases and disorders. Marine microbes represent a huge reservoir for exploration of novel bioactive compounds to provide future drugs as arsenal against cancer, microbial and protozoal infection, severe inflammation, and other major diseases.

Since the last two decades, marine microbiologists have identified different microbes including bacteria, fungi, actinomycetes, and microalgae-cyanobacteria (free-living and symbiotic) as a source of bioactive compounds. This chapter selectively highlights status and major critical research on various compounds of pharmaceutical importance derived from marine microorganisms. Antibacterial, antifungal, antiviral, anticancer, antimalarial activities were reported for 55 marine compounds. Similarly, 43 marine compounds were reported for anti-inflammatory, antituberculosis, anticholinesterase, antidiabetic activities. Additionally, 15 marine compounds bind to a variety of receptors and miscellaneous molecular targets.

Keywords

Marine microbes Bacteria Fungi Actinomycetes Cyanobacteria Symbiotic Cytotoxic Anti-inflammatory Antifungal Antimalarial Bioactive compounds 

References

  1. Abdel-Lateff A (2008) Chaetominedione a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett 49:6398–6400.  https://doi.org/10.1016/j.tetlet.2008.08.064 CrossRefGoogle Scholar
  2. Adams B, Porzgen P, Pittman E, Yoshida WY, Westenburg HE, Horgen FD (2008) Isolation and structure determination of malevamide E, a dolastatin 14 analog, from the marine cyanobacterium Symploca laete-viridis. J Nat Prod 71:750–754.  https://doi.org/10.1021/np070346o CrossRefGoogle Scholar
  3. Barde SR, Sakhare RS, Kanthale SB, Chandak PG, Jamkhande PG (2015) Marine bioactive agents: a short review on new marine antidiabetic compounds. Asian Pac J Trop Dis 5:S209–S213.  https://doi.org/10.1016/S2222-1808(15)60891-X CrossRefGoogle Scholar
  4. Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars? Angew Chem Int Ed 37:2162–2178. https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2162::AID-ANIE2162>3.0.CO;2-2 CrossRefGoogle Scholar
  5. Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722.  https://doi.org/10.1007/BF01925581 CrossRefGoogle Scholar
  6. Bidon-Chanal A, Fuertes A, Alonso D, Perez DI, Martinez A, Luque FJ, Medina M (2013) Evidence for anew binding mode to GSK-3: allosteric regulation by the marine compound palinurin. Eur J Med Chem 60:479–489CrossRefGoogle Scholar
  7. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116–211.  https://doi.org/10.1039/c4np00144c CrossRefGoogle Scholar
  8. Bruntner C, Binder T, Pathom-aree W, Goodfellow M, Bull AT, Potterat O, Puder C, Horer S, Schmid A, Bolek W (2014) Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J Antibiot (Tokyo) 55:346–349.  https://doi.org/10.1038/JA.2005.43 CrossRefGoogle Scholar
  9. Carr G, Raszek M, van Soest R, Matainaho T, Shopik M, Holmes CF, Andersen RJ (2007) Protein phosphatase inhibitors isolated from Spongia irregularis collected in Papua New Guinea. J Nat Prod 70:1812–1815.  https://doi.org/10.1021/np0702887 CrossRefGoogle Scholar
  10. Charan RD, Schlingmann G, Janso J, Bernan V, Feng X, Carter GT (2004) Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 67:1431–1433.  https://doi.org/10.1021/np040042r CrossRefGoogle Scholar
  11. Clark BR, Engene N, Teasdale ME, Rowley DC, Matainaho T, Valeriote FA, Gerwick WH (2008) Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum. J Nat Prod 70:1530–1537.  https://doi.org/10.1021/np800088a CrossRefGoogle Scholar
  12. Denko CW (1992) A role of neuropeptides in inflammation. In: Whicher JT, Evans SW (eds) Biochemistry of inflammation. Kluwer Publisher, London, pp 177–181CrossRefGoogle Scholar
  13. Desjardine K, Pereira A, Wright H, Matainaho T, Kelly M, Andersen RJ (2007) Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J Nat Prod 70:1850–1853.  https://doi.org/10.1021/np070209r CrossRefGoogle Scholar
  14. Du X, Lu C, Li Y, Zheng Z, Su W, Shen Y (2008) Three new antimicrobial metabolites of Phomopsis sp. J Antibiot (Tokyo) 61:250–253.  https://doi.org/10.1038/ja.2008.37 CrossRefGoogle Scholar
  15. Edrada RA, Heubes M, Brauers G, Wray V, Berg A, Grafe U, Wohlfarth M, Muhlbacher J, Schaumann K, Sudarsono (2002) Online analysis of xestodecalactones ac, novel bioactive metabolites from the fungus Penicillium cf. montanense and their subsequent isolation from the sponge Xestospongia exigua. J Nat Prod 65:1598–1604.  https://doi.org/10.1021/np020085c CrossRefGoogle Scholar
  16. Gao CH, Nong XH, Qi SH, Luo XM, Zhang S, Xiong HR (2010) A new nine-membered lactone from a marine fungus Cladosporium sp. F14. Chin Chem Lett 21:1355–1357.  https://doi.org/10.1016/j.cclet.2010.06.026 CrossRefGoogle Scholar
  17. Hart JB, Lill RE, Hickford SJH, Blunt JW, Munro MHG (2000) The halichondrins: chemistry, biology, supply and delivery. In: Fusetani N (ed) Drugs from the sea. Karger, Basel, pp 134–153.  https://doi.org/10.1159/000062488 CrossRefGoogle Scholar
  18. He J, Ji Y, Hu D, Zhang S, Yan H, Liu X, Luo H, Zhu H (2014) Structure and absolute configuration of penicilliumine, a new alkaloid from Penicillium commune 366606. Tetrahedron Lett 55:2684–2686.  https://doi.org/10.1016/j.tetlet.2014.03.031 CrossRefGoogle Scholar
  19. Hentschel U, Steinert M, Hacker J (2000) Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol 8:226–231.  https://doi.org/10.1016/S0966-842X(00)01758-3 CrossRefGoogle Scholar
  20. Holler U, Konig GM, Wright AD (1999) Three new metabolites from marine-derived fungi of the genera Coniothyrium and Microsphaeropsis. J Nat Prod 62:114–118.  https://doi.org/10.1021/np980341e CrossRefGoogle Scholar
  21. Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053.  https://doi.org/10.1124/mol.55.6.1049 CrossRefGoogle Scholar
  22. Imada G (2005) Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Anton Leeuw 87:59–63.  https://doi.org/10.1007/s10482-004-6544-x CrossRefGoogle Scholar
  23. Imhoff JF (2016) Natural products from marine fungi—still an underrepresented resource. Mar Drugs 14(1):19.  https://doi.org/10.3390/md14010019 CrossRefGoogle Scholar
  24. Isnansetyo A, Cui L, Hiramatsu K, Kamei Y (2003) Antibacterial activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. Int J Antimicrob Agents 22:545–547.  https://doi.org/10.1016/S0924-8579(03)00155-9 CrossRefGoogle Scholar
  25. Jacobson PB, Jacobs RS (1992) Fuscoside: an anti-inflammatory marine natural product which selectively inhibits 5-lipoxigenase. Part I: physiological and biochemical studies in murine inflammatory models. J Pharmacol Exp Ther 262:866–873Google Scholar
  26. Kanoh K, Okada A, Adachi K, Imagawa H, Nishizawa M, Matsuda S (2008) Ascochytatin, a novel bioactive spirodioxynaphthalene metabolite produced by the marine-derived fungus, Ascochyta sp. NGB4. J Antibiot 61:142–148.  https://doi.org/10.1038/ja.2008.123 CrossRefGoogle Scholar
  27. Krick A, Kehraus S, Gerhauser C, Klimo K, Nieger M, Maier A, Fiebig HH, Atodiresei I, Raabe G, Fleischhauer J, Konig GM (2007) Potential cancer chemopreventive in vitro activities of monomeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J Nat Prod 70:353–360.  https://doi.org/10.1021/np060505o CrossRefGoogle Scholar
  28. Kunze B, Bohlendorf B, Reichenbach H, Hofle G (2008) Pedein A and B: production, isolation, structure elucidation and biological properties of new antifungal cyclopeptides from Chondromyces pediculatus (Myxobacteria). J Antibiot (Tokyo) 61:18–26.  https://doi.org/10.1038/ja.2008.104 CrossRefGoogle Scholar
  29. Kushida N, Watanabe N, Okuda T, Yokoyama F, Gyobu Y, Yaguchi T (2007) PF1270 A, B and C, novel histamine H3 receptor ligands produced by Penicillium waksmanii PF1270. J Antibiot (Tokyo) 60:667–673.  https://doi.org/10.1038/ja.2007.85 CrossRefGoogle Scholar
  30. Lauritano C, Ianora A (2016) Marine organisms with anti-diabetes properties. Mar Drugs 220:1.  https://doi.org/10.3390/md14120220:1–14 CrossRefGoogle Scholar
  31. Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A Laatsch H (2005) Chinikomycins A and B: isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. Isolate M045. J Nat Prod 68:349–353.  https://doi.org/10.1021/np030518r CrossRefGoogle Scholar
  32. Li X, Kim SK, Nam KW, Kang JS, Choi HD, Son BW (2006) A new antibacterial dioxopiperazine alkaloid related to gliotoxin from a marine isolate of the fungus Pseudallescheria. J Antibiot (Tokyo) 59:248–250.  https://doi.org/10.1038/ja.2006.35 CrossRefGoogle Scholar
  33. Li X, Yao Y, Zheng Y, Sattler I, Lin W (2007) Cephalosporolides H and I, two novel lactones from a marine-derived fungus, Penicillium sp. Arch Pharm Res 30:812–881.  https://doi.org/10.1007/BF02978829 CrossRefGoogle Scholar
  34. Liang W, Le X, Li H, Yang X, Chen J, Xu J, Liu H, Wang L, Wang K, Hu K (2014) Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya Pseudofischeri. Mar Drugs 12:5657–5676.  https://doi.org/10.3390/md12115657 CrossRefGoogle Scholar
  35. Linington RG, Gonzalez J, Urena LD, Romero LI, Ortega-Barria E, Gerwick WH (2007) Venturamides A and B: antimalarial constituents of the Panamanian marine cyanobacterium Oscillatoria sp. J Nat Prod 70:397–401.  https://doi.org/10.1021/np0605790 CrossRefGoogle Scholar
  36. Liu H, Edrada-Ebel RA, Ebel R, Wang Y, Schulz B, Draeger S (2009) Drimane sesquiterpenoids from the fungus Aspergillus ustus isolated from the marine sponge Suberites domuncula. J Nat Prod 72:1585–1588.  https://doi.org/10.1021/np900220r CrossRefGoogle Scholar
  37. Liu Y, Zhao S, Ding W, Wang P Yang X, Xu J (2014) Methylthio-aspochalasins from a marine-derived fungus Aspergillus sp. Mar Drugs 12:5124–5131.  https://doi.org/10.3390/md12105124 CrossRefGoogle Scholar
  38. Losgen S, Schlörke O, Meindl K, Herbst-Irmer R, Zeeck A (2007) Structure and biosynthesis of chaetocyclinones, new polyketides produced by an endosymbiotic fungus. Eur J Org Chem 2007:2191–2196.  https://doi.org/10.1002/ejoc.200601020 CrossRefGoogle Scholar
  39. Macherla VR, Liu J, Bellows C, Teisan S, Lam KS, Potts BC (2005) Glaciapyrroles A, B and C, pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod 68:780–783.  https://doi.org/10.1021/np049597c CrossRefGoogle Scholar
  40. Macherla VR, Liu J, Sunga M, White DJ, Grodberg J, Teisan S, Lam KS, Potts BC (2007) Lipoxazolidinones A, B, and C: antibacterial 4-oxazolidinones from a marine actinomycete isolated from a Guam marine sediment. J Nat Prod 70:1454–1457.  https://doi.org/10.1021/np0702032 CrossRefGoogle Scholar
  41. Macmillan JB, Molinski TF (2005) Majusculoic acid, a brominated cyclopropyl fatty acid from a marine cyanobacterial mat assemblage. J Nat Prod 68:604–606.  https://doi.org/10.1021/np049596k CrossRefGoogle Scholar
  42. Maskey RP, Li FC, Qin S, Fiebig HH, Laatsch H (2003) Chandrananimycins A approximately C: production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J Antibiot (Tokyo) 56:622–629.  https://doi.org/10.7164/antibiotics.56.622 CrossRefGoogle Scholar
  43. Maskey RP, Sevvana M, Uson I, Helmke E, Laatsch H (2004) Gutingimycin: a highly complex metabolite from a marine streptomycete. Angew Chem Int Ed Eng 43:1281–1283.  https://doi.org/10.1002/anie.200352312 CrossRefGoogle Scholar
  44. McPhail KL, Correa J, Li nington RG, Gonzalez J, Ortega-Barria E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:984–988.  https://doi.org/10.1021/np0700772 CrossRefGoogle Scholar
  45. Mendola D (2000) Aquacultural production of bryostatin 1 and ecteinascidin 743. In: Fusetani N (ed) Drugs from the sea. Karger, Basel, pp 120–133.  https://doi.org/10.1159/000062482 CrossRefGoogle Scholar
  46. Mi-Hee C, Hyeon-Jin KK, Yeop J, Seong CH (2008) The isolation and characterization of Pseudozyma sp. JCC207 a novel producer of squalene. Appl Microbiol Biotechnol 78:963–972.  https://doi.org/10.1007/s00253-008-1395-4 CrossRefGoogle Scholar
  47. Minagawa K, Kouzuki S, Kamigauchi T (2002) Stachyflin and acetylstachyflin, novel anti-influenza A virus substances, produced by Stachybotrys sp. RF-7260. II. Synthesis and preliminary structure-activity relationships of stachyflin derivatives. J Antibiot 55:165–171.  https://doi.org/10.7164/antibiotics.55.165 CrossRefGoogle Scholar
  48. Mitchell SS, Nicholson B, Teisan S, Lam KS, Potts BCM (2004) Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J Nat Prod 67:1400–1402.  https://doi.org/10.1021/np049970g CrossRefGoogle Scholar
  49. Moore BS, Trischman JA, Seng D, Kho D, Jensen PR, Fenical W (1999) Salinamides, Antiinflammatory peptides from a marine Streptomycete. J Organomet Chem 64:1145–1150.  https://doi.org/10.1021/jo9814391 CrossRefGoogle Scholar
  50. Muftah, Shushni AM, Singh R, Mentel R, Lindequist U (2011) Balticolid: a new 12-membered macrolide with antiviral activity from an Ascomycetous fungus of marine origin. Mar Drugs 9:844–851.  https://doi.org/10.3390/md9050844 CrossRefGoogle Scholar
  51. Na M, Meujo DAF, Kevin D, Hamann MT, Anderson M, Hill RT (2008) A new antimalarial polyether from a marine Streptomyces sp. H668. Tetrahedron Lett 49:6282–6285.  https://doi.org/10.1016/j.tetlet.2008.08.052 CrossRefGoogle Scholar
  52. Naganuma M, Nishida M, Kuramochi K, Sugawara F, Yoshida H, Mizushina Y (2008) 1-deoxyrubralactone, a novel specific inhibitor of families X and Y of eukaryotic DNA polymerases from a fungal strain derived from sea algae. Bioorg Med Chem Lett 16:2939–2944.  https://doi.org/10.1016/j.bmc.2007.12.044 CrossRefGoogle Scholar
  53. Neuhof T, Schmieder P, Preussel K, Dieckmann R, Pham H, Bartl F, von Dohren H (2005) Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp. J Nat Prod 68:695–700.  https://doi.org/10.1021/np049671r CrossRefGoogle Scholar
  54. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced pre-clinical trials. J Nat Prod 67:1216–1238.  https://doi.org/10.1021/np040031y CrossRefGoogle Scholar
  55. Oh DC, Gontang EA, Kauffman CA, Jensen PR, Fenical W (2008) Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J Nat Prod 71:570–575.  https://doi.org/10.1021/np0705155 CrossRefGoogle Scholar
  56. Pandey S, Sree A, Dash SS, Sethi DP, Chowdhury L (2013) Diversity of marine bacteria producing beta-glucosidase inhibitors. Microb Cell Factories 12.  https://doi.org/10.1186/1475-2859-12-35 CrossRefGoogle Scholar
  57. Pietra F (1997) Secondary metabolites from marine microorganisms: bacteria, protozoa, algae and fungi. Achievements and prospects. Nat Prod Res 14:453–464.  https://doi.org/10.1039/NP9971400453 CrossRefGoogle Scholar
  58. Pontius A, Krick A, Kehraus S, Brun R, Konig GM (2008a) Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J Nat Prod 71:579–1584.  https://doi.org/10.1021/np800294q CrossRefGoogle Scholar
  59. Pontius A, Krick A, Mesry R, Kehraus S, Foegen SE, Muller M, Klimo K, Gerhauser C, Konig GM (2008b) Monodictyochromes A and B, dimeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J Nat Prod 71:793–1799.  https://doi.org/10.1021/np800392w CrossRefGoogle Scholar
  60. Punyasloke B, Balsam TM, Phillip C (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337.  https://doi.org/10.1007/s10295-005-0070-3 CrossRefGoogle Scholar
  61. Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344.  https://doi.org/10.1039/C0NP00061B CrossRefGoogle Scholar
  62. Renner MK, Shen YC, Cheng XC, Jensen PR, Frankmoelle W, Kauffman CA, Fenical W, Lobkovsky E, Clardy J (1999) Cyclomarins A–C, new anti-inflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J Am Chem Soc 121:11273–11276.  https://doi.org/10.1021/ja992482o CrossRefGoogle Scholar
  63. Riedlinger J Reicke A, Zähner H, Krismer B, Bull AT, Maldonado LA, Ward AC, Goodfellow M, Bister B, Bischoff D (2004) Abyssomicins, inhibitors of the p-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot 57:271–279.  https://doi.org/10.7164/antibiotics.57.271 CrossRefGoogle Scholar
  64. Rukachaisirikul TK, Sukpondma V, Phongpaichit Y, Preedanon S, Sakayaroj SJ (2009) Lactone derivatives from the marine-derived fungus Penicillium sp. PSU-F44. Chem Pharm Bull 57:1100–1102.  https://doi.org/10.1248/cpb.57.1100 CrossRefGoogle Scholar
  65. Sanchez Lopez JM, Martinez Insua M, Perez Baz J, Fernandez Puentes JL, Canedo Hernandez LM (2003) New cytotoxic indolic metabolites from a marine streptomyces. J Nat Prod 66:863–864.  https://doi.org/10.1021/np0204444 CrossRefGoogle Scholar
  66. Schmitt EK, Riwanto M, Sambandamurthy V, Roggo S, Miault C, Zwingelstein C, Krastel P, Noble C, Beer D, Rao SPS, Au M, Niyomrattanakit P, Lim V, Zheng J, Jeffery D, Pethe K, Camacho LR (2011) The natural product cyclomarin kills mycobacterium tuberculosis by targeting the Clp-C1 subunit of the Caseinolytic Protease. Angew Chem Int Ed 50:5889–5891.  https://doi.org/10.1002/anie.201101740 CrossRefGoogle Scholar
  67. Schumacher RW, Talmage SC, Miller SA, Sarris KE, Davidson BS, Goldberg A (2003) Isolation and structure determination of an antimicrobial ester from a marine-derived bacterium. J Nat Prod 66:1291–1293.  https://doi.org/10.1021/np020594e CrossRefGoogle Scholar
  68. Schupp P, Wray V, Eder C, Schneider P, Herderich M, Paul V, Proksch P (1999) Staurosporine derivatives from the ascidican Eudistoma toealensis and its predatory flatworm Pseudoceros sp. J Nat Prod 62:959–962.  https://doi.org/10.1021/np980527d CrossRefGoogle Scholar
  69. Seo C, Sohn JH, Oh H, Kim BY, Ahn JS (2009) Isolation of the protein tyrosine phosphatase 1B inhibitory metabolite from the marine-derived fungus Cosmospora sp. SF-5060. Bioorg Med Chem Lett 19:6095–6096.  https://doi.org/10.1016/j.bmcl.2009.09.025 CrossRefGoogle Scholar
  70. Shigemori H, Komatsu K, Mikamia Y, Kobayashi J (1999) Seragakinone a new pentacyclic metabolite from a marine-derived fungus. Tetrahedron 55:14925–14930.  https://doi.org/10.1016/S0040-4020(99)00984-9 CrossRefGoogle Scholar
  71. Shin HJ, Pil GB, Heo SJ, Lee HS, Lee JS, Lee YJ, Lee J, Won HS (2015) Anti-inflammatory activity of tanzawaic acid derivatives from a marine-derived fungus Penicillium steckii 108YD142 14:1–9.  https://doi.org/10.3390/md14010014 CrossRefGoogle Scholar
  72. Shindo K, Mikami K, Tamesada E, Takaichi S, Adachi K, Misawa N, Maoka T (2007) Diapolycopenedioic acid xylosyl ester, a novel glyco-C30-carotenoic acid produced by a new marine bacterium Rubritalea squalenifaciens. Tetrahedron Lett 48:2725–2727.  https://doi.org/10.1016/j.tetlet.2007.02.065 CrossRefGoogle Scholar
  73. Shindo K, Kikuta K, Suzuki A (2007) Rare carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl Microbiol Biotechnol 74:1350–1357.  https://doi.org/10.1007/s00253-006-0774-y CrossRefGoogle Scholar
  74. Singh SB, Zink DL, Goetz MA, Dombrowski AW, Polishook JD, Hazuda DJ (1998) Equisetin and a novel opposite stereochemical homolog phomasetin, two fungal metabolites as inhibitors of HIV-1 integrase. Tetrahedron 39:2243–2246.  https://doi.org/10.1016/S0040-4039(98)00269-X CrossRefGoogle Scholar
  75. Soria-Mercado IE, Prieto-Davo A, Jensen PR, Fenical W (2005) Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J Nat Prod 68:904–910.  https://doi.org/10.1021/np058011z CrossRefGoogle Scholar
  76. Stritzke K, Schulz, Laatsch H, Helmke E, Beil W (2004) Novel caprolactones from a marine streptomycete. J Nat Prod 67:395–401.  https://doi.org/10.1021/np030321z CrossRefGoogle Scholar
  77. Taori K, Matthew S, Rocca JR, Paul VJ, Luesch H (2007) Lyngbyastatins 5–7, potent elastase inhibitors from Floridian marine cyanobacteria, Lyngbya sp. J Nat Prod 70:1593–1600.  https://doi.org/10.1021/np0702436 CrossRefGoogle Scholar
  78. Taori K, Paul VJ, Luesch H (2008) Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. J Nat Prod 71:1625–1629.  https://doi.org/10.1021/np8002172 CrossRefGoogle Scholar
  79. Trischman JA, Tapiolas DM, Jensen PR, Dwight R, Fenical W, McKee TC, Ireland CM, Stout TJ, Clardy J (1994) Salinamides A and B: anti-inflammatory depsipeptides from a marine Streptomycetes. J Am Chem Soc 116:757–758.  https://doi.org/10.1021/ja00081a042 CrossRefGoogle Scholar
  80. Trisuwan K, Rukachaisirikul V, Sukpondma Y, Preedanon S, Phongpaichit S, Rungjindamai N, Sakayaroj J (2008) Epoxydons and a pyrone from the marine-derived fungus Nigrospora sp. PSU-F5. J Nat Prod 71:1323–1326.  https://doi.org/10.1021/np8002595 CrossRefGoogle Scholar
  81. Uzair B, Ahmed N, Ahmad VU, Mohammad FV, Edwards DH (2008) The isolation, purification and bio-logical activity of a novel antibacterial compound produced by Pseudomonas stutzeri. FEMS Microbiol Lett 279:243–250.  https://doi.org/10.1111/j.1574-6968.2007.01036.x CrossRefGoogle Scholar
  82. Vacelet J (1975) Etude en microscopie électronique de l’associa-tion entre bactéries et spongiaires du genre Verongia (Dictyo-ceratida). J Microsc Biol Cell 23:271–288Google Scholar
  83. Wang J, Wei X, Lu X, Xu F, Wan J, Lin X, Zhou X, Liao S, Yang B, Tu Z, Liu Y (2014a) Eight new polyketide metabolites from the fungus Pestalotiopsis vaccinii endogenous with the mangrove plant Kandelia candel (L.) Druce. Tetrahedron 70:9695–9701.  https://doi.org/10.1016/j.tet.2014.10.056 CrossRefGoogle Scholar
  84. Wang J, Zhao Y, Men L, Zhang Y, Liu Z, Sun T, Geng Y, Yu Z (2014b) Secondary metabolites of the marine fungus Penicillium chrysogenum. Chem Nat Compd 50:405–407.  https://doi.org/10.1007/s10600-014-0971-3 CrossRefGoogle Scholar
  85. Wen SJ, Hu TS, Yao ZJ (2005) Macrocyclization studies and total synthesis of cyclomarin C, an anti-inflammatory marine cyclopeptide. Tetrahedron 61:4931–4938.  https://doi.org/10.1016/j.tet.2005.03.058 CrossRefGoogle Scholar
  86. Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reisser W (ed) Algae and symbioses. Biopress, Bristol, pp 112–151Google Scholar
  87. Williams PG, Asolkar RN, Kondratyuk T, Pezzuto JM, Jensen PR, Fenical W (2007) Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J Nat Prod 70:83–88.  https://doi.org/10.1021/np0604580 CrossRefGoogle Scholar
  88. Wu ZJ, Ouyang MA, Tan QW (2009) New asperxanthone and asperbiphenyl from the marine fungus Aspergillus sp. Pest Manag Sci 65:60–65.  https://doi.org/10.1002/ps.1645 CrossRefGoogle Scholar
  89. Xiao Z, Lin S, Tan C, Lu Y, He L, Huang X, She Z (2015) Asperlones A and B, dinaphthalenone derivatives from a mangrove endophytic fungus Aspergillus sp. 16–5C. Mar Drugs 13:366–378.  https://doi.org/10.3390/md13010366 CrossRefGoogle Scholar
  90. Xiong H, Qi S, Xu Y, Miao L, Qian PY (2009) Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. J Hydro-Environ Res 2:264–271.  https://doi.org/10.1016/j.jher.2008.12.002 CrossRefGoogle Scholar
  91. Yang R, Li C, Lin Y, Peng G, She Z, Zhou S (2006) Lactones from a brown alga endophytic fungus (no, Zzf36) from the South China Sea and their antimicrobial activities. Bioorg Med Chem Lett 16:4205–4208.  https://doi.org/10.1016/j.bmcl.2006.05.081 CrossRefGoogle Scholar
  92. Yang X, Kang M, Li Y, Kim EA, Kang S, Jeon YJ (2014) Anti-inflammatory activity of questinol isolated from marine-derived fungus Eurotium amstelodami in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Microbiol Biotechnol 24:1346–1353.  https://doi.org/10.4014/jmb.1405.05035 CrossRefGoogle Scholar
  93. Zhang D, Li X, Kang JS, Choi HD, Son BW (2007) A new α-pyrone derivative, 6-[(E)-hept-1-enyl]-α-pyrone, with tyrosinase inhibitory activity from a marine isolate of the fungus Botrytis. Bull Kor Chem Soc 28:887–888.  https://doi.org/10.1002/chin.200740195 CrossRefGoogle Scholar
  94. Zhang D, Yang X, Kang JS, Choi HD, Son BW (2008a) Circumdatin I, a new ultraviolet-A protecting benzodiazepine alkaloid from a marine isolate of the fungus Exophiala. J Antibiot (Tokyo) 61:40–42.  https://doi.org/10.1038/ja.2008.108 CrossRefGoogle Scholar
  95. Zhang Y, Ling S, Fang Y, Zhu T, Gu Q, Zhu WM (2008b) Isolation, structure elucidation, and antimycobacterial properties of dimeric naphtho-γ-pyrones from the marine-derived fungus Aspergillus carbonarius. Chem Biodivers 5:93–100.  https://doi.org/10.1002/cbdv.200890017 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abhishek Pandey
    • 1
  1. 1.School of Studies in Pharmaceutical SciencesJiwaji UniversityGwaliorIndia

Personalised recommendations