Advertisement

How to Increase Older Adults’ Accessibility to Mobile Technology? The New ECOMODE Camera

  • Nadia ManaEmail author
  • Ornella Mich
  • Michela Ferron
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 540)

Abstract

Designing and developing mobile technology that is able to meet the needs of older adults is fundamental to improve their independent living and expand their social inclusion. However, although mobile technology is nowadays widely present in our every-day activities, older adults continue to lag in its adoption. While exploring what hinders older adults in adopting mobile technology and questioning about how to increase their accessibility to it, the paper presents the ECOMODE project, whose technology based on the Event-Driven Compressive (EDC) paradigm is a possible answer. First, to contextualize our study, the paper describes the ECOMODE technology based on multimodal interaction, i.e. mid-air gestures combined with voice commands. Then, it details the process followed to design the interaction based on the ECOMODE technology, which aims to increase accessibility and usability of mobile devices for older adults.

Keywords

Mobile technology Multimodal interaction Speech-based interaction Mid- air gesture-based interaction Interaction design Older adults 

Notes

Acknowledgements

This work is supported by the EU HORIZON 2020 project ECOMODE—Event-Driven Compressive Vision for Multimodal Interaction with Mobile Devices (http://www.ecomode-project.eu/), under Grant Agreement 644096.

References

  1. 1.
    Naranjo, F. Z., & Pérez, A. A (2014). Facultad de Geografía e Historia. Universidad de Sevilla. De-partamento de Estadística e Investigación Operativa. Facultad de Matemáticas. Universidad de Sevilla.Google Scholar
  2. 2.
    Institute National de la statistique et des études économiques: Population totale parsexe et âge au 1er janvier 2016, France (2016). Available on: https://www.insee.fr/fr/accueil.
  3. 3.
    Istituto nazionale di statistica: Struttura della popolazione dal 2002 al 2016 (2016). Available (in Italian) on: http://demo.istat.it/.
  4. 4.
    The EU in the world 2016—A statistical portrait (2016). Online Eurostat publication, also down- loadable in pdf format, ISBN 978-92-79-59231-7,  https://doi.org/10.2785/745946, Cat. No KS-EX-16-001- EN-N. http://ec.europa.eu/eurostat/statistics-explained/index.php/The_EU_in_the_world.
  5. 5.
    Crews, D. E., & Zavotka, S. (2006). Aging, disability, and frailty: Implications for universal design. Journal of Physiological Anthropology, 25(1), 113–118.CrossRefGoogle Scholar
  6. 6.
    Fisk, A. D., Rogers, W. A., Charness, N., Czaja, S. J., & Sharit, J. (2009). Designing for older adults: Principles and creative human factors approaches. CRC press.Google Scholar
  7. 7.
    Blažun, H., Saranto, K., Kokol, P., & Vošner, J. (2012). Information and communication technology as a tool for improving physical and social activity of the elderly. In NI 2012: 11th International Congress on Nursing Informatics, June 23–27, 2012, Montreal, Canada. (Vol. 2012). American Medical Informatics Association.Google Scholar
  8. 8.
    Smith, A. (2015). Older adults and technology Use. Pew research center report. Last retrieved on 04/14/2017 from http://www.pewinternet.org/2014/04/03/older-adults-and-technology-use/.
  9. 9.
  10. 10.
    Charness, N., & Boot, W. R. (2009). Aging and information technology use: Potential and barriers. Current Directions in Psychological Science, 18(5), 253–258.CrossRefGoogle Scholar
  11. 11.
    Hernandez-Encuentra, E., Pousada, M., & Gomez-Zuniga, B. (2009). ICT and older people: Beyond usability. Educational Gerontology, 35, 226–245.CrossRefGoogle Scholar
  12. 12.
    Fraser, J., & Gutwin, C. (2000). A framework of assistive pointers for low vision users. In Proceedings of the Fourth International ACM Conference on Assistive technologies (pp. 9–16). ACM.Google Scholar
  13. 13.
    Metter, E. J., Conwit, R., Tobin, J., & Fozard, J. L. (1997). Age-associated loss of power and strength in the upper extremities in women and men. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52(5), B267–B276.CrossRefGoogle Scholar
  14. 14.
    Taveira, A. D., & Choi, S. D. (2009). Review study of computer input devices and older users. International Journal of Human–Computer Interaction, 25(5), 455–474.CrossRefGoogle Scholar
  15. 15.
    Findlater, L., Froehlich, J. E., Fattal, K., Wobbrock, J. O., & Dastyar, T. (2013, April). Age-related differences in performance with touchscreens compared to traditional mouse input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 343–346). ACM.Google Scholar
  16. 16.
    White-Chu, E. F., & Reddy, M. (2011). Dry skin in the elderly: Complexities of a common problem. Clinics in Dermatology, 29(1), 37–42.  https://doi.org/10.1016/j.clindermatol.2010.07.005.CrossRefGoogle Scholar
  17. 17.
    Oviatt, S. (2012) Multimodal interfaces. In J. Jacko (Ed.), Human computer interaction handbook: Fundamentals, evolving technologies, and emerging applications (3rd ed., pp. 405–430). Mahwah, N. J.: LEA.Google Scholar
  18. 18.
    Conci, M., Pianesi, F., & Zancanaro, M. (2009, August). Useful, social and enjoyable: Mobile phone adoption by older people. In IFIP Conference on Human-Computer Interaction (pp. 63–76). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  19. 19.
    Holzinger, A., Searle, G., & Nischelwitzer, A. (2007). On some aspects of improving mobile applications for the elderly. In International Conference on Universal Access in Human-Computer Interaction (pp. 923–932). Berlin, Heidelberg: Springer.Google Scholar
  20. 20.
    Doyle, J., Bertolotto, M., & Wilson, D. (2013). Towards Multimodal Mobile GIS for the Elderly. In Digital Literacy: Concepts, Methodologies, Tools, and Applications (pp. 590–609). IGI Global.Google Scholar
  21. 21.
    Byrne, W., Doermann, D., Franz, M., Gustman, S., Hajic, J., Oard, D., et al. (2004). Automatic recognition of spontaneous speech for access to multilingual oral history archives. Speech and Audio Processing, IEEE Transactions on, 12(4), 420–435.CrossRefGoogle Scholar
  22. 22.
    Chen, X. A., Schwarz, J., Harrison, C., Mankoff, J., & Hudson, S. E. (2014, October). Air + touch: interweaving touch & in-air gestures. In Proceedings of the 27th annual ACM symposium on User interface software and technology (pp. 519–525). ACM.Google Scholar
  23. 23.
    Coelho, J., Duarte, C., Biswas, P., & Langdon, P. (2011, October). Developing accessible TV applications. In The Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 131–138). ACM.Google Scholar
  24. 24.
    Jian, C., Shi, H., Schafmeister, F., Rachuy, C., Sasse, N., Schmidt, H., et al. (2013). Touch and speech: Multimodal interaction for elderly persons. In International Joint Conference on Biomedical Engineering Systems and Technologies (pp. 385–400). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  25. 25.
    Jude, A., Poor, G. M., & Guinness, D. (2014). Evaluating multimodal interaction with gestures and speech for point and select tasks. In Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational (pp. 1027–1030). ACM.Google Scholar
  26. 26.
    Wilkowska, W., & Ziefle, M. (2009). Which factors form older adults’ acceptance of mobile in- formation and communication technologies? (pp. 81–101). Berlin Heidelberg: Springer.Google Scholar
  27. 27.
    Turk, M. (2014). Multimodal interaction: A review. Pattern Recognition Letters, 36, 189–195.CrossRefGoogle Scholar
  28. 28.
    Caprani, N., O’Connor, N. E., & Gurrin, C. (2012). Touch screens for the older user. In Assistive technologies. UK: InTech.Google Scholar
  29. 29.
    Basson, S., Fairweather, P. G., & Hanson, V. L. (2007). Speech recognition and alternative interfaces for older users. Interactions, 14(4), 26–29.CrossRefGoogle Scholar
  30. 30.
    Vipperla, R., Renals, S., & Frankel, J. (2008). Longitudinal study of ASR performance on ageing voices.Google Scholar
  31. 31.
    Rousan, M., & Assaleh, K. (2011). A wavelet and neural network-based voice system for a smart wheelchair control. Journal of the Franklin Institute, 348(1), 90–100.CrossRefGoogle Scholar
  32. 32.
    LaViola Jr, J. J. (2014). An introduction to 3D gestural interfaces. In ACM SIGGRAPH 2014 Courses (p. 25). ACM.Google Scholar
  33. 33.
    Carreira, M., Ting, K. L. H., Csobanka, P., & Gonçalves, D. (2017). Evaluation of in-air hand gestures interaction for older people. Universal Access in the Information Society, 16(3), 561–580.CrossRefGoogle Scholar
  34. 34.
    Chen, M. Y., Mummert, L., Pillai, P., Hauptmann, A., & Sukthankar, R. (2010, March). Controlling your TV with gestures. In Proceedings of the International Conference on Multimedia Information Retrieval (pp. 405–408). ACM.Google Scholar
  35. 35.
    Cody, M. J., Dunn, D., Hoppin, S., & Wendt, P. (1999). Silver surfers: Training and evaluating Internet use among older adult learners. Communication Education, 48(4), 269–286.CrossRefGoogle Scholar
  36. 36.
    Cooper, G., & Bowers, J. (1995). Representing the user: Notes on the disciplinary rhetoric of human-computer interaction. Cambridge Series on Human Computer Interaction, 48–66.Google Scholar
  37. 37.
    Harrison, S., Sengers, P., & Tatar, D. (2011). Making epistemological trouble: Third paradigm HCI as successor science. Interacting with Computers, 23(5), 385–392.CrossRefGoogle Scholar
  38. 38.
    Rogers, Y., & Marsden, G. (2013). Does he take sugar? Moving beyond the rhetoric of compassion. Interactions, 20(4), 48–57.CrossRefGoogle Scholar
  39. 39.
    Camuñas-Mesa, L., et al. (2012). An event-driven multi-kernel convolution processor module for event-driven vision sensors. IEEE Journal of Solid-State Circuits, 47(2), 504–517.CrossRefGoogle Scholar
  40. 40.
    Maguire, M. (2001). Methods to support human-centred design. International Journal of Human-Computer Studies, 55(4), 587–634.CrossRefGoogle Scholar
  41. 41.
    Sanders, E. B. N., & Stappers, P. J. (2008). Co-creation and the new landscapes of design. Co-design, 4(1), 5–18.Google Scholar
  42. 42.
    Schiavo, G., Ferron, M., Mich, O., & Mana, N. (2016). Wizard of Oz studies with older adults: A methodological note. International Reports on Socio-Informatics, 13(3), 93–100.Google Scholar
  43. 43.
    Gregor, P., Newell, A. F., & Zajicek, M. (2002). Designing for dynamic diversity: interfaces for older people. In Proceedings of the Fifth International ACM Conference on Assistive Technologies (pp. 151–156). ACM.Google Scholar
  44. 44.
    Lindsay, S., Jackson, D., Schofield, G., & Olivier, P. (2012). Engaging older people using participatory design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1199–1208). ACM.Google Scholar
  45. 45.
    Censis. (2013). Gli anziani: Una risorsa per il Paese. Dossier (in Italian) available at http://www.censis.it/14?shadow_ricerca=120985.
  46. 46.
    Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365.  https://doi.org/10.1287/isre.11.4.342.11872.CrossRefGoogle Scholar
  47. 47.
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS, Quarterly, 425–478.CrossRefGoogle Scholar
  48. 48.
    Hanson, V. L. (2010). Influencing technology adoption by older adults. Interacting with Computers, 22(6), 502–509.CrossRefGoogle Scholar
  49. 49.
    Ryan, E. B., Szechtman, B., & Bodkin, J. (1992). Attitudes toward younger and older adults learning to use computers. Journal of Gerontology, 47(2), P96–P101.CrossRefGoogle Scholar
  50. 50.
    Lindsay, S., Jackson, D., Schofield, G., & Olivier, P. (2012). Engaging older people using participatory design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1199–1208). ACM.Google Scholar
  51. 51.
    Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365.  https://doi.org/10.1287/isre.11.4.342.11872.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FBK—Fondazione Bruno KesslerTrentoItaly

Personalised recommendations