Advertisement

The CARESSES EU-Japan Project: Making Assistive Robots Culturally Competent

  • Barbara BrunoEmail author
  • Nak Young Chong
  • Hiroko Kamide
  • Sanjeev Kanoria
  • Jaeryoung Lee
  • Yuto Lim
  • Amit Kumar Pandey
  • Chris Papadopoulos
  • Irena Papadopoulos
  • Federico Pecora
  • Alessandro Saffiotti
  • Antonio Sgorbissa
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 540)

Abstract

The nursing literature shows that cultural competence is an important requirement for effective healthcare. We claim that personal assistive robots should likewise be culturally competent, that is, they should be aware of general cultural characteristics and of the different forms they take in different individuals, and take these into account while perceiving, reasoning, and acting. The CARESSES project is a Europe-Japan collaborative effort that aims at designing, developing and evaluating culturally competent assistive robots. These robots will be able to adapt the way they behave, speak and interact to the cultural identity of the person they assist. This paper describes the approach taken in the CARESSES project, its initial steps, and its future plans.

Notes

Acknowledgements

The CARESSES project is supported by the European Commission Horizon2020 Research and Innovation Programme under grant agreement No. 737858, and by the Ministry of Internal Affairs and Communication of Japan.

References

  1. 1.
    Andrist, S., Ziadee, M., Boukaram, H., Mutlu, B., & Sakr, M. (2015). Effects of culture on the credibility of robot speech: A comparison between English and Arabic. In HRI 2015 (pp. 157–164).Google Scholar
  2. 2.
    Baader, F. (2003). The description logic handbook: Theory, implementation and applications. Cambridge University Press.Google Scholar
  3. 3.
    Bruno, B., Mastrogiovanni, F., Pecora, F., Sgorbissa, A., & Saffiotti, A. (2017). A framework for culture-aware robots based on fuzzy logic. In IEEE International Conference on Fuzzy Systems (To appear).Google Scholar
  4. 4.
    Bruno, B., Mastrogiovanni, F., Saffiotti, A., & Sgorbissa, A. (2014). Using fuzzy logic to enhance classification of human motion primitives. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 596–605).Google Scholar
  5. 5.
    Chin, J. P., Diehl, V. A., & Norman, K. L. (1988). Development of an instrument measuring user satisfaction of the human-computer interface. In CHI 1988 (pp. 213–218).Google Scholar
  6. 6.
    Eresha, G., Häring, M., Endrass, B., André, E., & Obaid, M. (2013). Investigating the influence of culture on proxemic behaviors for humanoid robots. In RO-MAN 2013 (pp. 430–435).Google Scholar
  7. 7.
    European Transcultural Nursing Association (ETNA). (2018). Retrieved November 24, 2018. Access: http://europeantransculturalnurses.eu/.
  8. 8.
    Evers, V., Maldonado, H., Brodecki, T., & Hinds, P. (2008). Relational vs. group self-construal: untangling the role of national culture in HRI. In HRI 2008 (pp. 255–262).Google Scholar
  9. 9.
    Ferro, E., Girolami, M., Salvi, D., Mayer, C., Gorman, J., Grguric, A., et al. (2015). The universAAL platform for AAL (ambient assisted living). Journal of Intelligent Systems, 24(3), 301–319.CrossRefGoogle Scholar
  10. 10.
    Ghallab, M., Nau, D. S., & Traverso, P. (2014). The actor’s view of automated planning and acting: A position paper. Artificial Intelligence, 208, 1–17.CrossRefGoogle Scholar
  11. 11.
    Hays, R. D., Sherbourne, C. D., & Mazel, R. M. (1993). The RAND 36-item health survey 1.0. Health Economics, 2(3), 217–27.CrossRefGoogle Scholar
  12. 12.
    Hofstede, G., Hofstede, G. J., & Minkov, M. (1991). Cultures and organizations: Software of the mind (Vol. 2). Citeseer.Google Scholar
  13. 13.
    Joosse, M. P., Poppe, R. W., Lohse, M., & Evers, V. (2014). Cultural differences in how an engagement-seeking robot should approach a group of people. In CABS 2014 (pp. 121–130).Google Scholar
  14. 14.
    Köckemann, U., Pecora, F., & Karlsson, L. (2014). Grandpa hates robots—Interaction constraints for planning in inhabited environments. In AAAI 2014 (pp. 2293–2299).Google Scholar
  15. 15.
    Laskey, K. B. (2008). MEBN: A language for first-order Bayesian knowledge bases. Artificial Intelligence, 172(2–3), 140–178.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lugrin, B., Frommel, J., & André, E. (2015). Modeling and evaluating a Bayesian network of culture-dependent behaviors. In Culture Computing 2015 (pp. 33–40).Google Scholar
  17. 17.
    Mcfarland, M. R., & Leininger, M. M. (2002). Transcultural nursing: Concepts, theories, research and practice (3rd ed.). New York, NY: McGraw-Hill.Google Scholar
  18. 18.
    Makatchev, M. (2013, January). Cross-cultural believability of robot characters. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
  19. 19.
    Mansouri, M., & Pecora, F. (2016). A robot sets a table: A case for hybrid reasoning with different types of knowledge. Journal of Experimental and Theoretical Artificial Intelligence, 28(5), 801–821.CrossRefGoogle Scholar
  20. 20.
    Matsumoto, S. (2010). Echonet: A home network standard. IEEE Pervasive Computing, 9(3), 88–92.CrossRefGoogle Scholar
  21. 21.
    Papadopoulos, I., Tilki, M., & Lees, S. (2004). Promoting cultural competence in health care through a research based intervention. Journal of Diversity in Health and Social Care, 1(2), 107–115.Google Scholar
  22. 22.
    Papadopoulos, I. (2006). Transcultural health and social care: Development of culturally competent practitioners. Elsevier Health Sciences.Google Scholar
  23. 23.
    Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge University Press.Google Scholar
  24. 24.
    Transcultural C.A.R.E. Associates. (2018). Retrieved November 24, 2018. Access: http://transculturalcare.net/.
  25. 25.
    Trovato, G., Ham, J. R. C., Hashimoto, K., Ishii, H., & Takanishi, A. (2015). Investigating the effect of relative cultural distance on the acceptance of robots. In ICSR 2016 (pp. 664–673).CrossRefGoogle Scholar
  26. 26.
    Trovato, G., Zecca, M., Do, M., Terlemez, Ö., Kuramochi, M., Waibel, A., et al. (2015). A novel greeting selection system for a culture-adaptive humanoid robot. International Journal of Advanced Robotic Systems, 12.CrossRefGoogle Scholar
  27. 27.
    Wang, L., Rau, P.-L. P., Evers, V., Robinson, B. K., & Hinds, P. (2010). When in Rome: The role of culture & context in adherence to robot recommendations. In HRI 2010 (pp. 359–366).Google Scholar
  28. 28.
    Wongpatikaseree, K., Ikeda, M., Buranarach, M., Supnithi, T., Lim, A. O., & Tan, Y. (2012). Activity recognition using context-aware infrastructure ontology in smart home domain. In KICSS 2012 (pp. 50–57).Google Scholar
  29. 29.
    Zarit, S. H., Reever, K. E., & Bach-Peterson, J. (1980). The RAND 36-item health survey 1.0. Gerontologist, 20(6), 649–55.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Barbara Bruno
    • 1
    Email author
  • Nak Young Chong
    • 2
  • Hiroko Kamide
    • 3
  • Sanjeev Kanoria
    • 4
  • Jaeryoung Lee
    • 5
  • Yuto Lim
    • 2
  • Amit Kumar Pandey
    • 6
  • Chris Papadopoulos
    • 7
  • Irena Papadopoulos
    • 8
  • Federico Pecora
    • 9
  • Alessandro Saffiotti
    • 9
  • Antonio Sgorbissa
    • 1
  1. 1.University of GenovaGenoaItaly
  2. 2.Japan Advanced Institute of Science and TechnologyNomiJapan
  3. 3.Nagoya UniversityNagoyaJapan
  4. 4.Advinia Health Care Limited LTDLondonUK
  5. 5.Chubu UniversityKasugaiJapan
  6. 6.Softbank Robotics Europe SASParisFrance
  7. 7.University of BedfordshireLutonUK
  8. 8.Middlesex University Higher Education Corporation, The BurroughsHendon, LondonUK
  9. 9.Örebro UniversityÖrebroSweden

Personalised recommendations