Advertisement

Machine Learning in Physical Verification, Mask Synthesis, and Physical Design

  • Yibo LinEmail author
  • David Z. Pan
Chapter

Abstract

Yield, turn-around time, and chip quality are always of significant concerns for VLSI designs. The performance and efficiency of key design steps such as physical design, mask synthesis, and physical verification are critical to guarantee fast design closure and manufacturability. Recent advances in machine learning provide various new opportunities and approaches to tackle these challenges. This chapter will discuss several applications of machine learning in the backend design flow and demonstrate its impacts to existing design automation methodology.

References

  1. 1.
    W.T.J. Chan, Y. Du, A.B. Kahng, S. Nath, K. Samadi, Beol stack-aware routability prediction from placement using data mining techniques, in IEEE International Conference on Computer Design (ICCD) (2016), pp. 41–48Google Scholar
  2. 2.
    W.T.J. Chan, P.H. Ho, A.B. Kahng, P. Saxena, Routability optimization for industrial designs at sub-14nm process nodes using machine learning, in ACM International Symposium on Physical Design (ISPD) (2017), pp. 15–21Google Scholar
  3. 3.
    C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  4. 4.
    M. Cho, H. Xiang, H. Ren, M.M. Ziegler, R. Puri, LatchPlanner: latch placement algorithm for datapath-oriented high-performance VLSI designs, in IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2013), pp. 342–348Google Scholar
  5. 5.
    S. Chou, M.K. Hsu, Y.W. Chang, Structure-aware placement for datapath-intensive circuit designs, in ACM/IEEE Design Automation Conference (DAC) (2012), pp. 762–767Google Scholar
  6. 6.
    S. Chowdhury, Analytical approaches to the combinatorial optimization in linear placement problems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 8(6), 630–639 (1989)CrossRefGoogle Scholar
  7. 7.
    D. Ding, J.R. Gao, K. Yuan, D.Z. Pan, AENEID: a generic lithography-friendly detailed router based on post-RET data learning and hotspot detection, in ACM/IEEE Design Automation Conference (DAC) (2011), pp. 795–800Google Scholar
  8. 8.
    D. Ding, J.A. Torres, D.Z. Pan, High performance lithography hotspot detection with successively refined pattern identifications and machine learning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(11), 1621–1634 (2011)CrossRefGoogle Scholar
  9. 9.
    D. Ding, B. Yu, J. Ghosh, D.Z. Pan, Epic: efficient prediction of IC manufacturing hotspots with a unified meta-classification formulation, in IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC) (2012), pp. 263–270Google Scholar
  10. 10.
    R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, C.J. Lin, LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(Aug), 1871–1874 (2008)zbMATHGoogle Scholar
  11. 11.
    J.R. Gao, H. Jawandha, P. Atkar, A. Walimbe, B. Baidya, O. Rizzo, D.Z. Pan, Self-aligned double patterning compliant routing with in-design physical verification flow, in Proceedings of SPIE, vol. 8684 (2013), p. 868408Google Scholar
  12. 12.
    J.R. Gao, B. Yu, D.Z. Pan, Accurate lithography hotspot detection based on PCA-SVM classifier with hierarchical data clustering, in Proceedings of SPIE, vol. 9053 (2014), p. 90530EGoogle Scholar
  13. 13.
    I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in Advances in Neural Information Processing Systems (2014), pp. 2672–2680Google Scholar
  14. 14.
    I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT press, Cambridge, 2016)zbMATHGoogle Scholar
  15. 15.
    A. Gu, A. Zakhor, Optical proximity correction with linear regression. IEEE Trans. Semicond. Manuf. 21(2), 263–271 (2008)CrossRefGoogle Scholar
  16. 16.
    T. Hastie, R. Tibshirani, J. Friedman, J. Franklin, The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)Google Scholar
  17. 17.
    S. Held, U. Schorr, Post-routing latch optimization for timing closure, in ACM/IEEE Design Automation Conference (DAC) (2014), pp. 7:1–7:6Google Scholar
  18. 18.
    N. Jia, E.Y. Lam, Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis. J. Opt. 12(4), 045601:1–045601:9 (2010)Google Scholar
  19. 19.
    J.H. Jun, M. Park, C. Park, H. Yang, D. Yim, M. Do, D. Lee, T. Kim, J. Choi, G. Luk-Pat, et al.: Layout optimization with assist features placement by model based rule tables for 2x node random contact, in Proceedings of SPIE (2015), p. 94270DGoogle Scholar
  20. 20.
    A.B. Kahng, C.H. Park, X. Xu, Fast dual graph based hotspot detection, in Proceedings of SPIE, vol. 6349 (2016), p. 63490HGoogle Scholar
  21. 21.
    B.S. Kim, Y.H. Kim, S.H. Lee, S.I. Kim, S.R. Ha, J. Kim, A. Tritchkov, Pixel-based SRAF implementation for 32nm lithography process, in Proceedings of SPIE (2008), p. 71220TGoogle Scholar
  22. 22.
    C. Kodama, T. Kotani, S. Nojima, S. Mimotogi, Sub-resolution assist feature arranging method and computer program product and manufacturing method of semiconductor device (2014). US Patent 8809072Google Scholar
  23. 23.
    S.Y. Lin, J.Y. Chen, J.C. Li, W.y. Wen, S.C. Chang, A novel fuzzy matching model for lithography hotspot detection, in ACM/IEEE Design Automation Conference (DAC) (2013), pp. 1–6Google Scholar
  24. 24.
    Y. Lin, X. Xu, J. Ou, D.Z. Pan, Machine learning for mask/wafer hotspot detection and mask synthesis, in Photomask Technology, vol. 10451 (International Society for Optics and Photonics, Bellingham, 2017), p. 104510AGoogle Scholar
  25. 25.
    Y. Lin, Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, M. Li, D.Z. Pan, Data efficient lithography modeling with residual neural networks and transfer learning, in ACM International Symposium on Physical Design (ISPD) (2018), pp. 82–89Google Scholar
  26. 26.
    R. Luo, Optical proximity correction using a multilayer perceptron neural network. J. Opt. 15(7), 075708 (2013)Google Scholar
  27. 27.
    K.S. Luo, Z. Shi, X.L. Yan, Z. Geng, SVM based layout retargeting for fast and regularized inverse lithography. J. Zhejiang Univ. Sci. C 15(5), 390–400 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Matsunawa, J.R. Gao, B. Yu, D.Z. Pan, A new lithography hotspot detection framework based on AdaBoost classifier and simplified feature extraction, in Proceedings of SPIE, vol. 9427 (2015)Google Scholar
  29. 29.
    T. Matsunawa, B. Yu, D.Z. Pan, Optical proximity correction with hierarchical Bayes model, in Proceedings of SPIE, vol. 9426 (2015)Google Scholar
  30. 30.
    T. Matsunawa, S. Nojima, T. Kotani, Automatic layout feature extraction for lithography hotspot detection based on deep neural network, in Proceedings of SPIE (2016)Google Scholar
  31. 31.
    T. Matsunawa, B. Yu, D.Z. Pan, Optical proximity correction with hierarchical Bayes model. J. Micro/Nanolithogr. MEMS MOEMS 15(2), 021009 (2016)Google Scholar
  32. 32.
    J. Mitra, P. Yu, D.Z. Pan, RADAR: RET-aware detailed routing using fast lithography simulations, in ACM/IEEE Design Automation Conference (DAC), pp. 369–372 (2005)Google Scholar
  33. 33.
    S. Miyama, K. Yamamoto, K. Koyama, Large-area optical proximity correction with a combination of rule-based and simulation-based methods. Jpn. J. Appl. Phys. 35(12S), 6370 (1996)Google Scholar
  34. 34.
    M.J. Moshkov, Time complexity of decision trees, in Transactions on Rough Sets III (Springer, Berlin, 2005), pp. 244–459CrossRefGoogle Scholar
  35. 35.
    L. Pang, Y. Liu, D. Abrams, Inverse lithography technology (ILT): a natural solution for model-based SRAF at 45nm and 32nm, in Proceedings of SPIE, p. 660739 (2007)Google Scholar
  36. 36.
    D. Papa, C. Alpert, C. Sze, Z. Li, N. Viswanathan, G.J. Nam, I.L. Markov, Physical synthesis with clock-network optimization for large systems on chips. IEEE Micro 31(4), 51–62 (2011)CrossRefGoogle Scholar
  37. 37.
    Y. Ping, S. McGowan, Y. Gong, Y.M. Foong, J. Liu, J. Qiu, V. Shu, B. Yan, J. Ye, P. Li, et al.: Process window enhancement using advanced ret techniques for 20nm contact layer, in Proceedings of SPIE, p. 90521N (2014)Google Scholar
  38. 38.
    K. Sakajiri, A. Tritchkov, Y. Granik, Model-based SRAF insertion through pixel-based mask optimization at 32nm and beyond, in Proceedings of SPIE, p. 702811 (2008)Google Scholar
  39. 39.
    S.D. Shang, L.Swallow, Y. Granik, Model-based SRAF insertion (2011). US Patent 8037429Google Scholar
  40. 40.
    M. Shin, J.H. Lee, Accurate lithography hotspot detection using deep convolutional neural networks. J. Micro/Nanolithogr. MEMS MOEMS 15(4), 043507 (2016)Google Scholar
  41. 41.
    N. Viswanathan, M. Pan, C. Chu, FastPlace 3.0: a fast multilevel quadratic placement algorithm with placement congestion control, in IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC) (2007), pp. 135–140Google Scholar
  42. 42.
    R. Viswanathan, J.T. Azpiroz, P. Selvam, Process optimization through model based SRAF printing prediction, in Proceedings of SPIE (2012), p. 83261AGoogle Scholar
  43. 43.
    S.I. Ward, D.A. Papa, Z. Li, C.N. Sze, C.J. Alpert, E. Swartzlander, Quantifying academic placer performance on custom designs, in ACM International Symposium on Physical Design (ISPD) (2011), pp. 91–98Google Scholar
  44. 44.
    S. Ward, D. Ding, D.Z. Pan, PADE: a high-performance placer with automatic datapath extraction and evaluation through high dimensional data learning, in ACM/IEEE Design Automation Conference (DAC) (2012), pp. 756–761Google Scholar
  45. 45.
    S.I. Ward, N. Viswanathan, N.Y. Zhou, C.C. Sze, Z. Li, C.J. Alpert, D.Z. Pan, Clock power minimization using structured latch templates and decision tree induction, in IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2013), pp. 599–606Google Scholar
  46. 46.
    Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, Accurate lithography simulation model based on convolutional neural networks, in Proceedings of SPIE, vol. 10147 (2017), p. 101470KGoogle Scholar
  47. 47.
    W.Y. Wen, J.C. Li, S.Y. Lin, J.Y. Chen, S.C. Chang, A fuzzy-matching model with grid reduction for lithography hotspot detection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(11), 1671–1680 (2014)CrossRefGoogle Scholar
  48. 48.
    H. Xiang, M. Cho, H. Ren, M. Ziegler, R. Puri, Network flow based datapath bit slicing, in ACM International Symposium on Physical Design (ISPD) (2013), pp. 139–146Google Scholar
  49. 49.
    X. Xu, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani, D.Z. Pan, A machine learning based framework for sub-resolution assist feature generation, in ACM International Symposium on Physical Design (ISPD) (2016), pp. 161–168Google Scholar
  50. 50.
    X. Xu, Y. Lin, M. Li, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani, D.Z. Pan, Sub-resolution assist feature generation with supervised data learning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(6), 1225–1236 (2018)CrossRefGoogle Scholar
  51. 51.
    J. Yang, N. Rodriguez, O. Omedes, F. Gennari, Y.C. Lai, V. Mankad, DRCPlus in a router: automatic elimination of lithography hotspots using 2D pattern detection and correction. Proc. SPIE 7641, 76410Q (2010)CrossRefGoogle Scholar
  52. 52.
    H. Yang, Y. Lin, B. Yu, F.E. Young, Lithography hotspot detection: from shallow to deep learning, in IEEE International System-on-Chip Conference (SOCC) (2017), pp. 233–238Google Scholar
  53. 53.
    H. Yang, L. Luo, J. Su, C. Lin, B. Yu, Imbalance aware lithography hotspot detection: a deep learning approach. Proc. SPIE 16(3), 033504 (2017)Google Scholar
  54. 54.
    H. Yang, J. Su, Y. Zou, B. Yu, F.E. Young, Layout hotspot detection with feature tensor generation and deep biased learning, in ACM/IEEE Design Automation Conference (DAC) (2017), p. 62Google Scholar
  55. 55.
    J. Ye, Y. Cao, H. Feng, System and method for model-based sub-resolution assist feature generation (2011). US Patent 7882480Google Scholar
  56. 56.
    Y.T. Yu, Y.C. Chan, S. Sinha, I.H.R. Jiang, C. Chiang, Accurate process-hotspot detection using critical design rule extraction, in ACM/IEEE Design Automation Conference (DAC) (2012), pp. 1167–1172Google Scholar
  57. 57.
    Y.T. Yu, G.H. Lin, I.H.R. Jiang, C. Chiang, Machine learning based hotspot detection using topological classification and critical feature extraction, in ACM/IEEE Design Automation Conference (DAC) (2013), p. 67Google Scholar
  58. 58.
    B. Yu, D.Z. Pan, T. Matsunawa, X. Zeng, Machine learning and pattern matching in physical design, in IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC) (2015), pp. 286–293Google Scholar
  59. 59.
    H. Zhang, B. Yu, Y.F. Evangeline, Enabling online learning in lithography hotspot detection with information-theoretic feature optimization, in IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2016), p. 47Google Scholar
  60. 60.
    H. Zhang, F. Zhu, H. Li, F.E. Young, B. Yu, Bilinear lithography hotspot detection, in ACM International Symposium on Physical Design (ISPD) (2017), pp. 7–14Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Texas at AustinAustinUSA

Personalised recommendations