Advertisement

Extreme Statistics in Memories

  • Amith SingheeEmail author
Chapter

Abstract

Memory design specifications typically include yield requirements, apart from performance and power requirements. These yield requirements are usually specified for the entire memory array at some supply voltage and temperature conditions. For example, the designer may be comfortable with an array failure probability of one in a thousand at 100C and 1 V supply, i.e., Ff,array ≤ 10−3. However, how does this translate to a yield requirement for the memory cell? How do we even estimate the statistical distribution of memory cell performance metrics in this extreme rare event regime? We will answer these questions and in the process see the application of certain machine learning techniques and extreme value theory in memory design.

Notes

Acknowledgements

This work was supported by the MARCO/DARPA Focus Research Center for Circuit and System Solutions (C2S2) and the Semiconductor Research Corporation.

References

  1. 1.
    A.A. Balkema, L. de Haan, Residual life time at great age. Ann. Probab. 2(5), 792–804 (1974)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A.C. Davison, R.L. Smith, Models for exceedances over high thresholds (with discussion). J. R. Stat. Soc. Ser. B Methodol. 52, 393–442 (1990)zbMATHGoogle Scholar
  3. 3.
    P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling Extremal Events for Insurance and Finance, 4th edn. (Springer, Berlin, 2003)zbMATHGoogle Scholar
  4. 4.
    R.A. Fisher, L.H.C. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philol. Soc. 24, 180–190 (1928)CrossRefGoogle Scholar
  5. 5.
    B. Gnedenko, Sur la distribution limite du terme maximum d’une aleatoire. Ann. Math. 44(3), 423–453 (1943)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S.D. Grimshaw, Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics 35(2), 185–191 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, New York, 2001)CrossRefGoogle Scholar
  8. 8.
    J.R.M. Hosking, J.R. Wallis, Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3), 339–349 (1987)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J.R.M. Hosking, The theory of probability weighted moments, IBM Research Report, RC12210, 1986Google Scholar
  10. 10.
    T. Joachims, Making large-scale SVM learning practical, in Advances in Kernel Methods - Support Vector Learning, ed. by B. Schölkopf, C. Burges, A. Smola (MIT Press, Cambridge, 1999)Google Scholar
  11. 11.
    B. Joshi, R.K. Anand, C. Berg, J. Cruz-Rios, A. Krishnamurthi, N. Nettleton, S. Ngu-yen, J. Reaves, J. Reed, A. Rogers, S. Rusu, C. Tucker, C. Wang, M. Wong, D. Yee, J.-H. Chang, A BiCMOS 50MHz cache controller for a superscalar microprocessor, in International Solid-State Circuits Conference (1992)Google Scholar
  12. 12.
    R.K. Krishnamurthy, A. Alvandpour, V. De, S. Borkar, High-performance and low-power challenges for sub-70nm microprocessor circuits, in Proceedings of Custom Integrated Circuits Conference (2002)Google Scholar
  13. 13.
    W. Liu, X. Jin, J. Chen, M.-C. Jeng, Z. Liu, Y. Cheng, K. Chen, M. Chan, K. Hui, J. Huang, R. Tu, P. Ko, C. Hu, BSIM 3v3.2 Mosfet Model Users’ Manual, Tech. Report No. UCB/ERL M98/51, University of California, Berkeley, 1988Google Scholar
  14. 14.
    K. Morik, P. Brockhausen, T. Joachims, Combining statistical learning with a knowledge-based approach - a case study in intensive care monitoring, in Proceedings of 16th International Conference on Machine Learning (1999)Google Scholar
  15. 15.
    J. Pickands III, Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)MathSciNetCrossRefGoogle Scholar
  16. 16.
    W.H. Press, B.P. Flannery, A.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1992)zbMATHGoogle Scholar
  17. 17.
    S.I. Resnick, Extreme Values, Regular Variation and Point Processes (Springer, New York, 1987)CrossRefGoogle Scholar
  18. 18.
    A. Singhee, Novel algorithms for fast statistical analysis of scaled circuits. PhD Thesis, Electrical and Computer Engineering, Carnegie Mellon University (2007)Google Scholar
  19. 19.
    A. Singhee, SiLVR: projection pursuit for response surface modeling, in Machine Learning in VLSI Computer Aided Design, ed. by I.M. Elfadel, D. Boning, X. Li (Springer, Berlin, 2018)Google Scholar
  20. 20.
    A. Singhee, R.A. Rutenbar, Statistical Blockade: a novel method for very fast Monte Carlo simulation of rare circuit events, and its application, in Proceedings of Design Automation & Test in Europe (2007)Google Scholar
  21. 21.
    A. Singhee, R.A. Rutenbar, Beyond low-order statistical response surfaces: latent variable regression for efficient, highly nonlinear fitting, in Proceedings of IEEE/ACM Design Automation Conference (2007)Google Scholar
  22. 22.
    A. Singhee, R. Rutenbar, Extreme Statistics in Nanoscale Memory Design (Springer, New York, 2010)CrossRefGoogle Scholar
  23. 23.
    A. Singhee, J. Wang, B.H. Calhoun, R.A. Rutenbar, Recursive Statistical Blockade: an enhanced technique for rare event simulation with application to SRAM circuit design, in Proceeding of International Conference on VLSI Design (2008)Google Scholar
  24. 24.
    R.L. Smith, Estimating tails of probability distributions. Ann. Stat. 15(3), 1174–1207 (1987)MathSciNetCrossRefGoogle Scholar
  25. 25.
    R.L. Smith, Maximum likelihood estimation in a class of non-regular cases. Biometrika 72, 67–92 (1985)MathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Wang, A. Singhee, R.A. Rutenbar, B.H. Calhoun, Modeling the minimum standby supply voltage of a full SRAM array, in Proceedings of European Solid-State Circuits Conference (2007)Google Scholar
  27. 27.
    J. Wang, A. Singhee, R.A. Rutenbar, B.H. Calhoun, Two fast methods for estimating the minimum standby supply voltage for large SRAMs. IEEE Trans. Comput. Aided Des. 29(12), 1908–1920 (2010)CrossRefGoogle Scholar
  28. 28.
    K. Zhang, Embedded Memories for Nanoscale VLSIs (Springer, New York, 2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IBM ResearchBangaloreIndia

Personalised recommendations