Advertisement

Error Rate Prediction of Applications Implemented in Multi-Core and Many-Core Processors

  • Pablo RamosEmail author
  • Vanessa Vargas
  • Raoul Velazco
  • Nacer-Eddine Zergainoh
Chapter

Abstract

This work proposes an approach for predicting the error rate of applications implemented in multi/many-core processors. The prediction is based on the intrinsic sensitivity of the device and the soft error-rate of the application. This approach applies the principles of Code Emulating Upset (CEU) method, which combines radiation experiments with software-Implemented fault-injection. CEU approach has been demonstrated to be very effective for mono-core processors. However, advanced devices such as many-core processor implement complex architectures regarding memory hierarchy and communications. For this reason, an extension of the CEU technique is required to face these new features. In this chapter are explored three devices with different technologies and architectures aiming at providing a general approach for SEE evaluation and error-rate prediction. The target devices are: the Freescale P2041, Epiphany E16G301 and MPPA-256 multi/many-core processors. Obtained results provide relevant information about how to select an appropriate device depending on the application and the operating environment. In addition, it can be seen a small underestimation of the error rate since not all sensitive areas of the device could be targeted during fault injection campaigns.

Notes

Acknowledgments

This work was supported in a part by the Universidad de las Fuerzas Armadas ESPE and by the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación del Ecuador (SENESCYT), through the grant PIC-2017-EXT-005 and STIC-AmSud (Science et Technologie de l’Information et de la Communication en Amerique du Sud) – Energy-aware Scheduling and Fault Tolerance Techniques for the Exascale Era (EnergySFE) Project PIC-16-ESPE-STIC-001.

References

  1. 1.
    Certification Authorities Software Team (CAST), Position paper cast-32 multi-core processors. https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf. Accessed Nov 2016
  2. 2.
    R. Baumann, Soft errors in advanced computer systems. IEEE Des Test Comput 22(3), 258–266 (2005)CrossRefGoogle Scholar
  3. 3.
    W. Hughes, Single Event Effects Mitigation Techniques Report, Federal Aviation Administration, DOT/FAA/TC-15/62, 2016, p. 1–241Google Scholar
  4. 4.
    R. Velazco, S. Rezgui, R. Ecoffet, Predicting error rate for microprocessor-based digital architectures through C.E.U. (code emulating upsets) injection. IEEE Trans. Nucl. Sci. 47, 2405–2411 (2000)CrossRefGoogle Scholar
  5. 5.
    R. Velazco, G. Foucard, P. Peronnard, Combining results of accelerated radiation tests and fault injections to predict the error rate of an application implemented in SRAM-based FPGAs. IEEE Trans. Nucl. Sci. 57, 3500–3505 (2010)Google Scholar
  6. 6.
    P. Ramos, Evaluation of the SEE sensitivity and methodology for error rate prediction of applications implemented in multi-core and manycore processors. http://tima.univ-grenoble-alpes.fr/tima/en/mediatheque/PhDthesisresult_id452.html, France, ISBN: 978-2-11-129226-0, Accessed Apr 2017
  7. 7.
    V. Vargas, P. Ramos, W. Mansour, R. Velazco, N. Zergainoh, J. Mehaut, Preliminary results of SEU fault-injection on multicore processors in AMP mode, in Proceedings of the IEEE 20th International On-Line Testing Symposium (IOLTS), Platja d'Aro, Catalunya, Spain (2014), pp. 194–197Google Scholar
  8. 8.
    H. Quinn, The use of accelerated radiation testing for avionics. AIP Conf. Proc. 1525(1) (2013)Google Scholar
  9. 9.
    F. Miller, C. Weulersse, T. Carriere, N. Guibbaud, S. Morand, R. Gaillard, Investigation of 14 MeV neutron capabilities for SEU hardness evaluation. IEEE Trans. Nucl. Sci. 60, 2789–2796 (2013)CrossRefGoogle Scholar
  10. 10.
    Jesd89A, Measurement and reporting of alpha particle and terrestrial cosmic ray-induced soft errors in semiconductor devices, JEDEC Solid State Technology Association. http://www.jedec.org/sites/default/files/docs/jesd89a.pdf. Accessed 23 Dec 2016
  11. 11.
    P. Ramos, V. Vargas, M. Baylac, F. Villa, S. Rey, J.A. Clemente, N.E. Zergainoh, J.F. Méhaut, R. Velazco, Evaluating the SEE sensitivity of a 45nm SOI multi-core processor due to 14 MeV neutrons. IEEE Trans. Nucl. Sci. 63, 2193–2200 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Villa, M. Baylac, S. Rey, O. Rossetto, W. Mansour, P. Ramos, et al., Accelerator-based neutron irradiation of integrated circuits at GENEPI2 (France), in Proceedings of the Radiation Effects Data Workshop, Paris, France (2014), pp. 1–5Google Scholar
  13. 13.
    Freescale, P2040/P2041 QorIQ Integrated Multicore Communication Processor Family Reference Manual Rev. 3., http://cache.freescale.com/files/32bit/doc/ref_manual/P3041RM.pdf. Accessed 2015
  14. 14.
    ADAPTEVA, Epiphany Architecture Reference Rev 14.03.11. http://www.adapteva.com/docs/epiphany_arch_ref.pdf. Accessed 23 Dec 2016
  15. 15.
    KALRAY, MPPA-256 Boostan Cluster and I/O subsystem Architecture. Unpublished manuscript, France, 2016Google Scholar
  16. 16.
    G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, O. Schwartz, Communication-optimal parallel algorithm for Strassen’s matrix multiplication, in Proceedings of the 24th Annual ACM Symposium on Parallelism in Algorithms and Architectures, June 2012, pp. 193–204Google Scholar
  17. 17.
    S.S. Stolt, E. Normand, A multicore server SEE cross section model. IEEE Trans. Nucl. Sci. 59(6), 2803–2810 (2012)CrossRefGoogle Scholar
  18. 18.
    ADAPTEVA, Epiphany SDK Rev 5.13.09.10. http://www.adapteva.com/docs/epiphany_sdk_ref.pdf. Accessed 23 Dec 2016
  19. 19.
    V. Vargas, P. Ramos, V. Ray, C. Jalier, R. Stevens, B.D.D. Dinechin, M. Baylac, F. Villa, S. Rey, N.E. Zergainoh, J.F. Méhaut, R. Velazco, Radiation experiments on a 28 nm single-chip many-core processor and seu error-rate prediction. IEEE Trans. Nucl. Sci. 64, 483–490 (2017)CrossRefGoogle Scholar
  20. 20.
    P. Ramos, V. Vargas, M. Baylac, N.E. Zergainoh, R. Velazco, SEE error-rate evaluation for applications implemented in COTS multi-core and many-core processors. IEEE Trans. Nucl. Sci. 65(8), 1879-1886 (2018)CrossRefGoogle Scholar
  21. 21.
    K. LaBel, L. Cohn, Radiation testing and evaluation issues for modern integrated circuits, NASA/GSFC Code 561.4Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pablo Ramos
    • 1
    Email author
  • Vanessa Vargas
    • 1
  • Raoul Velazco
    • 2
  • Nacer-Eddine Zergainoh
    • 3
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquiEcuador
  2. 2.Centre Nationale Recherche Scientifique (CNRS)GrenobleFrance
  3. 3.Université de Grenoble-AlpesGrenobleFrance

Personalised recommendations