Advertisement

Fault Injection Methodologies

  • Luis EntrenaEmail author
  • Mario García-Valderas
  • Almudena Lindoso
  • Marta Portela-Garcia
  • Enrique San Millán
Chapter

Abstract

Fault injection is a widely used method to evaluate fault effects and error mitigation in a design. While not a replacement for standard Radiation-Hardness Assurance methodologies, it can provide valuable information in a quick and inexpensive manner. Moreover, recent developments have improved performance by several orders of magnitude, thus enabling the realization of extremely large fault injection campaigns. Today, fault injection can be used to forecast the expected circuit behaviour in the occurrence of SEUs and SETs, validate error mitigation approaches and detect weak areas that require error mitigation. This chapter will review the most relevant fault injection methods, covering software-based techniques, simulation techniques and FPGA-based emulation techniques. Recent advances for SET and MCU emulation are presented.

Keywords

Soft error SEU SET MCU Single-event-induced charge sharing Fault injection FPGA emulation 

Notes

Acknowledgment

This work was supported in part by the Spanish Ministry of Economy and Competitiveness under project ESP2015-68245-C4-1-P.

References

  1. 1.
    R.C. Baumann, Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans. Device Mater. Reliab. 5(3), 305–316 (2005)CrossRefGoogle Scholar
  2. 2.
    H. Ziade et al., A survey on fault injection techniques. Int. Arab J. Inf. Technol. 1(2), 171–186 (2004)Google Scholar
  3. 3.
    M.C. Hsueh, T.K. Tsai, R.K. Iyer, Fault injection techniques and tools. Computer 30(4), 75–82 (1997)CrossRefGoogle Scholar
  4. 4.
    H.M. Quinn, D.A. Black, W.H. Robinson, S.P. Buchner, Fault simulation and emulation tools to augment radiation-hardness assurance testing. IEEE Trans. Nucl. Sci. 60(3), 2119–2142 (2013)CrossRefGoogle Scholar
  5. 5.
    R. Velazco, S. Karoui, T. Chapuis, D. Benezech, L.H. Rosier, Heavy ion test results for the 68020 microprocessor and the 68882 coprocessor. IEEE Trans. Nucl. Sci. 39(3), 436–440 (1992)CrossRefGoogle Scholar
  6. 6.
    R. Velazco, T. Calin, M. Nicolaidis, S.C. Moss, S.D. LaLumondiere, V.T. Tran, R. Koga, SEU-hardened storage cell validation using a pulsed laser. IEEE Trans. Nucl. Sci. 43(6), 2843–2848 (1996)CrossRefGoogle Scholar
  7. 7.
    F. Vargas, D.L. Cavalcante, E. Gatti, D. Prestes, D. Lupi, On the proposition of an EMI-based fault injection approach, in 11th IEEE International On-Line Testing Symposium, (Saint Raphaël, French Riviera, 2005), pp. 207–208CrossRefGoogle Scholar
  8. 8.
    J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, G.H. Leber, Comparison of physical and software-implemented fault injection techniques. IEEE Trans. Comput. 52(9), 1115–1133 (2003)CrossRefGoogle Scholar
  9. 9.
    R. Velazco, S. Rezgui, R. Ecoffet, Predicting error rate for microprocessor-based digital architectures through C.E.U. (code emulating upsets) injection. IEEE Trans. Nucl. Sci. 47(6), 2405–2411 (2000)CrossRefGoogle Scholar
  10. 10.
    J. Aidemark, J. Vinter, P. Folkesson, J. Karlsson, GOOFI: Generic Object-Oriented Fault Injection Tool, in Proceedings of the International Conference on Dependable Systems and Networks (DSN'2001), July 2001Google Scholar
  11. 11.
    M. Portela-Garcia, C. Lopez-Ongil, M. Garcia Valderas, L. Entrena, Fault injection in modern microprocessors using on-Chip debugging infrastructures. IEEE Trans. Depend. Sec. Comput. 8(2), 308–314 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, S. Pastore, G.R. Sechi, R. Weigand, Evaluation of single event upset mitigation schemes for SRAM based FPGAs using the FLIPPER fault injection platform, in Proceedings of 22nd IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 105–113, Sep. 2007Google Scholar
  13. 13.
    Soft Error Mitigation Controller V4.1 Product Guide, Xilinx Inc., White Paper PG036, Nov. 2014Google Scholar
  14. 14.
    L. Berrojo, F. Corno, L. Entrena, I. González, C. López, M. Sonza, G. Squillero, An industrial environment for high-level fault-tolerant structures insertion and validation, in IEEE VLSI test symposium, Monterrey, CA, May 2002Google Scholar
  15. 15.
    D. Gonzalez-Gutierrez, Single event upsets simulation tool functional description, ESA Report TEC-EDM/DCC-SST2, July 2004Google Scholar
  16. 16.
    M.G. Valderas, M.P. Garcia, R.F. Cardenal, C.L. Ongil, L. Entrena, Advanced simulation and emulation techniques for fault injection, in IEEE International Symposium on Industrial Electronics, pp. 3339–3344, 2007Google Scholar
  17. 17.
    L. Antoni, R. Leveugle, B. Feher, Using run-time reconfiguration for fault injection in HW prototypes, in IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 245–253, 2002Google Scholar
  18. 18.
    M.A. Aguirre, J.N. Tombs, V. Baena, F. Muñoz-Chavero, A. Torralba, A. Fernandez-Leon, F. Tortosa, FT-UNSHADES: a new system for SEU injection, analysis and diagnostics over post synthesis netlist, in Proceedings of the NASA Military and Aerospace Programmable Logic Devices (MAPLD), Sep. 2005Google Scholar
  19. 19.
    J.M. Mogollon, H. Guzmán-Miranda, J. Nápoles, J. Barrientos, M.A. Aguirre, FTUNSHADES2: A novel platform for early evaluation of robustness against SEE, in 12th European Conference on Radiation and its Effects on Components and Systems, pp. 169–174, 2011Google Scholar
  20. 20.
    P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante, Exploiting circuit emulation for fast hardness evaluation. IEEE Trans. Nucl. Sci. 48(6), 2210–2216 (2001)CrossRefGoogle Scholar
  21. 21.
    C. López-Ongil, M. García-Valderas, M. Portela-García, L. Entrena, Autonomous fault emulation: a new FPGA-based acceleration system for hardness evaluation. IEEE Trans. Nucl. Sci. 54(1), 252–261 (2007)CrossRefGoogle Scholar
  22. 22.
    D. Alexandrescu, L. Anghel, M. Nicolaidis, Simulating single event transients in VDSM ICs for ground level radiation. J. Electron. Test. 20(4), 413–421 (2004)CrossRefGoogle Scholar
  23. 23.
    E. Costenaro, D. Alexandrescu, K. Belhaddad, M. Nicolaidis, A practical approach to single event transient analysis for highly complex design. J. Electron. Test. 29(3), 301–305 (2013)CrossRefGoogle Scholar
  24. 24.
    M.A. Aguirre, V. Baena, J. Tombs, M. Violante, A new approach to estimate the effect of single event transients in complex circuits. IEEE Trans. Nucl. Sci. 54(4), 1018–1024 (2007)CrossRefGoogle Scholar
  25. 25.
    M. García-Valderas, L. Entrena, R. Fernández-Cardenal, C. López-Ongil, M.P. García, SET emulation under a quantized delay model. J. Electron. Test. 25(1), 107–116 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Entrena, M. García-Valderas, R. Fernández-Cardenal, M.P. García, C. López-Ongil, SET emulation considering electrical masking effects. IEEE Trans. Nucl. Sci. 56(4), 2015–2021 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Pagliarini, F. Kastensmidt, L. Entrena, A. Lindoso, E. San Millán, Analyzing the impact of single-event-induced charge sharing in complex circuits. IEEE Trans. Nucl. Sci. 58(6), 2768–2775 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Entrena, M. García-Valderas, R. Fernández-Cardenal, A. Lindoso, M. Portela García, C. López-Ongil, Soft error sensitivity evaluation of microprocessors by multilevel emulation-based fault injection. IEEE Trans. Comput. 61(3), 313–322 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    L. Entrena, A. Lindoso, M. García-Valderas, M. Portela-García, C. López-Ongil, Analysis of SET effects in a PIC microprocessor for selective hardening. IEEE Trans. Nucl. Sci. 58(3), 1078–1085 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B. Du, M.S. Reorda, L. Sterpone, A new hybrid nonintrusive error-detection technique using dual control-flow monitoring. IEEE Trans. Nucl. Sci. 61(6), 3236–3243 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Entrena, A. Lindoso, E. San Millán, S. Pagliarini, F. Almeida, F. Kastensmidt, Constrained placement methodology for reducing SER under single-event-induced charge sharing effects. IEEE Trans. Nucl. Sci. 59(4), 811–817 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luis Entrena
    • 1
    Email author
  • Mario García-Valderas
    • 1
  • Almudena Lindoso
    • 1
  • Marta Portela-Garcia
    • 1
  • Enrique San Millán
    • 1
  1. 1.Electronic Technology DepartmentUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations