Pesticides: Classification, Detection, and Degradation

  • Sarath Chandran C. 
  • Sabu Thomas
  • M. R. Unni


Extensive and excessive use of organic pesticides poses a serious threat to the environment. The degradation products of most organic pesticides are far more toxic than the parent compound. The toxic effect of common pesticides, their degradation mechanisms, and common detection techniques are evaluated here. A literature survey shows that a detailed discussion on this relationship is extremely relevant in the current scenario.


Pesticides Fungicides and herbicides Detection of pesticides 


  1. Alavanja, M. C. R., Hoppin, J. A., & Kamel, F. (2004). Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annual Review of Public Health, 25(1), 155–197.PubMedGoogle Scholar
  2. Alternative and Biological Pest Controls | Commons Abundance Network. (n.d.).Google Scholar
  3. Application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. (n.d.). [Online]. Available: Accessed: 01 Sept 2016.
  4. Balinova, A. M., & Balinov, I. (1991). Determination of herbicide residues in soil in the presence of persistent organochlorine insecticides. Fresenius’ Journal of Analytical Chemistry, 339, 6, 409–412.Google Scholar
  5. Barker, S. A. (2007). Matrix solid phase dispersion (MSPD). Journal of Biochemical and Biophysical Methods, 70(2), 151–162.PubMedGoogle Scholar
  6. Basta, N. T., & Olness, A. (1992). Determination of alachlor, atrazine, and metribuzin in soil by resin extraction. Journal of Environmental Quality, 21(3), 497.Google Scholar
  7. Benson, W. R. (1969). The chemistry of pesticides. Annals of the New York Academy of Sciences, 160(1), 7–29.PubMedGoogle Scholar
  8. Bertazzi, P. A., Consonni, D., Bachetti, S., Rubagotti, M., Baccarelli, A., Zocchetti, C., & Pesatori, A. C. (2001). Health effects of dioxin exposure: A 20-year mortality study. American Journal of Epidemiology, 153(11), 1031–1044.PubMedGoogle Scholar
  9. de Bertrand, N., Durand, G., & Barceló, D. (1991). Extraction, cleanup and liquid chromatographic-diode array determination of carbamate pesticides in soil samples. Journal of Environmental Science and Health Part A: Environmental Science and Engineering and Toxicology, 26(4), 575–597.Google Scholar
  10. Bradberry, S. M., Cage, S. A., Proudfoot, A. T., & Vale, J. A. (2012). Poisoning due to pyrethroids. Toxicological Reviews, 24(2), 93–106.Google Scholar
  11. Bushway, R. J., Li, L., Paradis, L. R., & Perkins, L. B. (1995). Determination of thiabendazole in potatoes, fruits, and their processed products by liquid chromatography. Journal of AOAC International, 78(3), 815–820.PubMedGoogle Scholar
  12. Carabias-Martínez, R., Rodríguez-Gonzalo, E., Revilla-Ruiz, P., & Hernández-Méndez, J. (2005). Pressurized liquid extraction in the analysis of food and biological samples. Journal of Chromatography A, 1089(1–2), 1–17.PubMedGoogle Scholar
  13. Compelling Evidence of Human Health Effects of Pesticides. (n.d.). [Online]. Available: Accessed: 27 Aug 2016.
  14. Conway, G. R., & Barbier, E. B. (2013). After the green revolution: Sustainable agriculture for development. London: Routledge.Google Scholar
  15. Dequaire, M., Degrand, C., & Limoges, B. (1999). An immunomagnetic electrochemical sensor based on a perfluorosulfonate-coated screen-printed electrode for the determination of 2,4-dichlorophenoxyacetic acid. Analytical Chemistry, 71(13), 2571–2577.PubMedGoogle Scholar
  16. Durand, G., Forteza, R., & Barceló, D. (1989). Determination of chlorotriazine herbicides, their dealkylated degradation products and organophosphorus pesticides in soil samples by means of two different clean up procedures. Chromatographia, 28(11–12), 597–604.Google Scholar
  17. Durand, G., de Bertrand, N., & Barceló, D. (1991). Mobile phase variations in thermospray liquid chromatography-mass spectrometry of pesticides. Journal of Chromatography, 562(1–2), 507–523.PubMedGoogle Scholar
  18. Durand, G., Gille, P., Fraisse, D., & Barceló, D. (1992). Comparison of gas chromatographic-mass spectrometric methods for screening of chlorotriazine pesticides in soil. Journal of Chromatography, 603(1–2), 175–184.PubMedGoogle Scholar
  19. Eskenazi, B., Bradman, A., & Castorina, R. (1999). Exposures of children to organophosphate pesticides and their potential adverse health effects. Environmental Health Perspectives, 107(Suppl 3), 409–419.PubMedPubMedCentralGoogle Scholar
  20. Garcia Sanchez, F., & Aguilar Gallardo, A. (1992). Spectrofluorimetric determination of the insecticide azinphos-methyl in cultivated soils following generation of a fluorophore by hydrolysis. Analyst, 117(2), 195–198.Google Scholar
  21. Gimeno-García, E., Andreu, V., & Boluda, R. (1996). Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environmental Pollution, 92(1), 19–25.PubMedGoogle Scholar
  22. Hawthorne, S. B., Grabanski, C. B., Martin, E., & Miller, D. J. (2000). Comparisons of soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: Recovery, selectivity and effects on sample matrix. Journal of Chromatography. A, 892(1–2), 421–433.PubMedGoogle Scholar
  23. Huang, S.-D., Cheng, C.-P., & Sung, Y.-H. (1997). Determination of benzene derivatives in water by solid-phase microextraction. Analytica Chimica Acta, 343(1), 101–108.Google Scholar
  24. Kadenczki, L., Arpad, Z., Gardi, I., Ambrus, A., Gyorfi, L., Reese, G., & Ebing, W. (1992). Column extraction of residues of several pesticides from fruits and vegetables – A simple multiresidue analysis method. Journal of AOAC International, 75(1), 53–61.Google Scholar
  25. Kane, M., Dean, J. R., Hitchen, S. M., et al. (1993). Experimental design approach for supercritical fluid extraction. Analyst, 271, 83–90.Google Scholar
  26. Karalliedde, L., Wheeler, H., Maclehose, R., & Murray, V. (2000). Possible immediate and long-term health effects following exposure to chemical warfare agents. Public Health, 114(4), 238–248.PubMedGoogle Scholar
  27. Karami-Mohajeri, S., & Abdollahi, M. (2011). Toxic effects of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: A comprehensive review. Human & Experimental Toxicology, 30(9), 1119–1140.Google Scholar
  28. King, J. W., & Nam, K.-S. (1996). Coupling enzyme immunoassay with supercritical fluid extraction. In Immunoassays for residue analysis (vol. 621, pp. 422–438). 0 vols. American Chemical Society, USA.Google Scholar
  29. Kligerman, A. D., Doerr, C. L., Tennant, A. H., & Zucker, R. M. (2000). Cytogenetic studies of three triazine herbicides: I. In vitro studies1. Mutation Research Genetic Toxicology and Environmental Mutagenesis, 465(1–2), 53–59.PubMedGoogle Scholar
  30. Kotouček, M., & Opravilová, M. (1996). Voltammetric behaviour of some nitropesticides at the mercury drop electrode. Analytica Chimica Acta, 329(1), 73–81.Google Scholar
  31. Kumar, V., Upadhay, N., Wasit, A., Singh, S., & Kaur, P. (2013). Spectroscopic methods for the detection of organophosphate pesticides – A preview. Current World Environment Journal, 8(2), 313–318.Google Scholar
  32. Lawruk, T. S., Lachman, C. E., Jourdan, S. W., Fleeker, J. R., Herzog, D. P., & Rubio, F. M. (1993). Determination of metolachlor in water and soil by a rapid magnetic particle-based ELISA. Journal of Agricultural and Food Chemistry, 41(9), 1426–1431.Google Scholar
  33. Liao, W., Joe, T., & Cusick, W. G. (1991). Multiresidue screening method for fresh fruits and vegetables with gas chromatographic/mass spectrometric detection. Journal Association of Official Analytical Chemists, 74(3), 554–565.PubMedGoogle Scholar
  34. Longnecker, M. P., Rogan, W. J., & Lucier, G. (1997). The human health effects of Ddt (dichlorodiphenyltrichloroethane) and Pcbs (polychlorinated biphenyls) and an overview of organochlorines in public health. Annual Review of Public Health, 18(1), 211–244.PubMedGoogle Scholar
  35. López-Mesas, M., Crespi, M., Brach, J., & Mullender, J. P. (2000). Clean-up of a pesticide-lanolin mixture by gel permeation chromatography. Journal of Chromatographic Science, 38(12), 551–555.PubMedGoogle Scholar
  36. Martin-Neto, L., Traghetta, D. G., Vaz, C. M. P., Crestana, S., & Sposito, G. (2001). On the interaction mechanisms of atrazine and hydroxyatrazine with humic substances. Journal of Environmental Quality, 30(2), 520.PubMedGoogle Scholar
  37. McHugh, M., & Krukonis, V. (2013). Supercritical fluid extraction: Principles and practice. New York: Elsevier.Google Scholar
  38. Miyahara, M., Okada, Y., Takeda, H., Aoki, G., Kobayashi, A., & Saito, Y. (1994). Multiresidue procedures for the determination of pesticides in food using capillary gas chromatographic, flame photometric, and mass spectrometric techniques. Journal of Agricultural and Food Chemistry, 42(12), 2795–2802.Google Scholar
  39. Mustafa, A., & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 703(1), 8–18.PubMedGoogle Scholar
  40. Nkedi-Kizza, P., & Owusu-Yaw, J. (1992). Simultaneous high-performance liquid chromatographic determination of nitrate, nitrite, and organic pesticides in soil solution using a multidimensional column with ultraviolet detection. Journal of Environmental Science and Health, Part A Environmental Science Engineering, 27(1), 245–259.Google Scholar
  41. Norris, M. V., Vail, W. A., & Averell, P. R. (1954). Pesticide residues, colorimetric estimation of malathion residues. Journal of Agricultural and Food Chemistry, 2(11), 570–573.Google Scholar
  42. Omeroglu, P. Y., Boyacioglu, D., Ambrus, Á., Karaali, A., & Saner, S. (2012). An overview on steps of pesticide residue analysis and contribution of the individual steps to the measurement uncertainty. Food Analytical Methods, 5(6), 1469–1480.Google Scholar
  43. Oniszczuk, A., Waksmundzka-Hajnos, M., Skalicka-Woźniak, K., & Głowniak, K. (2013). Comparison of matrix-solid phase dispersion and liquid–solid extraction connected with solid-phase extraction in the quantification of selected furanocoumarins from fruits of Heracleum leskowii by high performance liquid chromatography. Industrial Crops and Products, 50, 131–136.Google Scholar
  44. Raju, J., & Gupta, V. K. (1991). A simple spectrophotometric determination of endosulfan in river water and soil. Fresenius’ Journal of Analytical Chemistry, 339(6), 431–433.Google Scholar
  45. Rogers, K. R., Cao, C. J., Valdes, J. J., Eldefrawi, A. T., & Eldefrawi, M. E. (1991a). Acetylcholinesterase fiber-optic biosensor for detection of anticholinesterases. Fundamental and Applied Toxicology: Official Journal of the Society of Toxicology, 16(4), 810–820.Google Scholar
  46. Rogers, K. R., Eldefrawi, M. E., Menking, D. E., Thompson, R. G., & Valdes, J. J. (1991b). Pharmacological specificity of a nicotinic acetylcholine receptor optical sensor. Biosensors & Bioelectronics, 6(6), 507–516.Google Scholar
  47. Rogers, K. R., Valdes, J. J., & Eldefrawi, M. E. (1991c). Effects of receptor concentration, media pH and storage on nicotinic receptor-transmitted signal in a fiber-optic biosensor. Biosensors & Bioelectronics, 6(1), 1–8.Google Scholar
  48. Rosenfeld, J. M. (1999). Solid-phase analytical derivatization: Enhancement of sensitivity and selectivity of analysis. Journal of Chromatography. A, 843(1–2), 19–27.PubMedGoogle Scholar
  49. Saillenfait, A.-M., Ndiaye, D., & Sabaté, J.-P. (2015). Pyrethroids: Exposure and health effects – An update. International Journal of Hygiene and Environmental Health, 218(3), 281–292.PubMedGoogle Scholar
  50. Schade, G., & Heinzow, B. (1998). Organochlorine pesticides and polychlorinated biphenyls in human milk of mothers living in northern Germany: Current extent of contamination, time trend from 1986 to 1997 and factors that influence the levels of contamination. Science of The Total Environment, 215(1–2), 31–39.PubMedGoogle Scholar
  51. Senanayake, N., & Karalliedde, L. (1987). Neurotoxic effects of organophosphorus insecticides. The New England Journal of Medicine, 316(13), 761–763.PubMedGoogle Scholar
  52. Shafer, T. J., Meyer, D. A., & Crofton, K. M. (2005). Developmental neurotoxicity of pyrethroid insecticides: Critical review and future research needs. Environmental Health Perspectives, 113(2), 123–136.PubMedGoogle Scholar
  53. Singh, R. B. (2000). Environmental consequences of agricultural development: A case study from the Green Revolution state of Haryana, India. Agriculture, Ecosystems and Environment, 82(1–3), 97–103.Google Scholar
  54. Sposito, G., Martin-Neto, L., & Yang, A. (1996). Atrazine complexation by soil humic acids. Journal of Environmental Quality, 25(6), 1203.Google Scholar
  55. Sterling, T. D., & Arundel, A. V. (1986). Health effects of phenoxy herbicides: A review. Scandinavian Journal of Work, Environment & Health, 12(3), 161–173.Google Scholar
  56. Suchan, P., Pulkrabová, J., Hajšlová, J., & Kocourek, V. (2004). Pressurized liquid extraction in determination of polychlorinated biphenyls and organochlorine pesticides in fish samples. Analytica Chimica Acta, 520(1–2), 193–200.Google Scholar
  57. Taylor S. G. (Florida Department of Agriculture and Consumer Services, Tallahassee, FL). (1991). General method for determination of pesticides in soil samples from pesticide mixer/loader sites. Journal Association of Official Analytical Chemists, USA 74, 878–883.Google Scholar
  58. Timperley, C. M., Casey, K. E., Notman, S., Sellers, D. J., Williams, N. E., Williams, N. H., & Williams, G. R. (2006). Synthesis and anticholinesterase activity of some new fluorogenic analogues of organophosphorus nerve agents. Journal of Fluorine Chemistry, 127(12), 1554–1563.Google Scholar
  59. Venugopal, N. V. S., Sumalatha, B., & Syedabano. (2012). Spectrophotometric determination of malathion in environmental samples. Journal of Chemistry, 9(2), 857–862.Google Scholar
  60. Vijverberg, H. P. M., & vanden Bercken, J. (1990). Neurotoxicological effects and the mode of action of pyrethroid insecticides. Critical Reviews in Toxicology, 21(2), 105–126.PubMedGoogle Scholar
  61. Wan, H. B., & Wong, M. K. (1996). Minimization of solvent consumption in pesticide residue analysis. Journal of Chromatography. A, 754(1), 43–47.Google Scholar
  62. Wang, Z.-D., Gamble, D. S., & Langford, C. H. (1990a). Interaction of atrazine with Laurentian fulvic acid: Binding and hydrolysis. Analytica Chimica Acta, 232, 181–188.Google Scholar
  63. Wang, Z.-D., Pant, B. C., & Langford, C. H. (1990b). Spectroscopic and structural characterization of a Laurentian fulvic acid: Notes on the origin of the color. Analytica Chimica Acta, 232, 43–49.Google Scholar
  64. Welhouse, G. J., & Bleam, W. F. (1992). NMR spectroscopic investigation of hydrogen bonding in atrazine. Environmental Science & Technology, 26(5), 959–964.Google Scholar
  65. Wesseling, C., Keifer, M., Ahlbom, A., McConnell, R., Moon, J.-D., Rosenstock, L., & Hogstedt, C. (2002). Long-term neurobehavioral effects of mild poisonings with organophosphate and n-methyl carbamate pesticides among banana workers. International Journal of Occupational and Environmental Health, 8(1), 27–34.PubMedGoogle Scholar
  66. What are Pesticides|Definition|Types|Uses and Effects. (2016). Chemistry.Google Scholar
  67. Wolfe, W. H., Michalek, J. E., Miner, J. C., et al. (1990). Health status of air force veterans occupationally exposed to herbicides in Vietnam: I. Physical health. JAMA, 264(14), 1824–1831.PubMedGoogle Scholar
  68. Wong, J. M., Li, Q. X., Hammock, B. D., & Seiber, J. N. (1991). Method for the analysis of 4-nitrophenol and parathion in soil using supercritical fluid extraction and immunoassay. Journal of Agricultural and Food Chemistry, 39(10), 1802–1807.Google Scholar
  69. Zacharia, & Tano, J. (2011). Identity, physical and chemical properties of pesticides. In M. Stoytcheva (Ed.), Pesticides in the modern world – trends in pesticides analysis. Rijeka: InTech.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sarath Chandran C. 
    • 1
  • Sabu Thomas
    • 1
    • 2
  • M. R. Unni
    • 1
  1. 1.Inter University Centre for Organic Farming and Sustainable Agriculture (IUCOFSA)Mahatma Gandhi UniversityKottayamIndia
  2. 2.Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia

Personalised recommendations