Advertisement

Pest and Disease Control Strategies in Organic Fruit Production

  • K. Usha
  • Pankaj Kumar
  • B. Singh
Chapter

Abstract

Organic farming in mango is an ecological production management system that promotes and enhances biological cycles, biodiversity, integrity and soil biological activities based on minimal use of off-farm inputs and on-farm management practices that maintain, restore and enhance harmony in the ecological system. In India, organic mango production was practised only by individual NGOs and entrepreneurs in isolated areas and is now slowly gaining popularity due to increased organic agribusiness trade, demand for safe food by the consumers, support from the government to organic fruit producers and income security to growers. Among other production problems, the challenge in organic mango production is timely control of several insect pests like hoppers, mealy bugs, stem bores and fruit flies and diseases like powdery mildew, anthracnose, sooty mould, mango malformation, etc. that drastically reduce fruit yields and quality. For successful organic mango production an integrated pest management approach which involves underlying preventative approaches to minimize the occurrence and extent of problems. Those practising organic mango cultivation in complementation with the adoption of IPM strategies observe greater yields and profits than organic farm cultivators without IPM. It may require some change in chemicals used for specific pest or disease control. Efforts to improve biodiversity of the organic farm to attract and harbour beneficial predators can better the efficiency of the employed IPM methods. Growing resistant varieties are best option. But any variety cannot be resistant to all pest problems. Alternate strategies to successfully control pests in organic mango production are hence needed. Some of them are discussed here.

References

  1. Adel, M. M., Sehnal, F., & Jurzysta, M. (2000). Effects of alfalfa saponins on the moth Spodoptera littoralis. Journal of Chemical Ecology, 26, 1065–1078.CrossRefGoogle Scholar
  2. Agudelo-Silva, F., Zalom, F. G., Hom, A., & Hendricks, L. (1995). Dormant season application of Steinernema carpocapsae (Rhabditida: Steinernematidae) and Heterorhabditis sp. (Rhabditida: Heterorhabditidae) on almond for control of overwintering Amyelois transitella and Anarsia lineatella (Lepidoptera: Gelechidiidae). Florida Entomologist, 78, 516–523.CrossRefGoogle Scholar
  3. Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use inagriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12.CrossRefGoogle Scholar
  4. Altieri, M. A. (1992). Biodiversity and Pest Management in Agroecosystems (p. 185). New York: Haworth Press.Google Scholar
  5. Balandrin, M. F. (1996). Commercial utilization of plant-derived saponins: An overview of medicinal, pharmaceutical, and industrial applications. In G. R. Waller & K. Yamasaki (Eds.), Saponins used in traditional medicine (pp. 1–14). New York: Plenum Press.Google Scholar
  6. Balazs, K. (1997). The importance of the parasitoids in apple orchards. Biological Agric Hortic 15, 123–129.CrossRefGoogle Scholar
  7. Barnett, W. W., Edstrom, J. P., Coviello, R. L., & Zalom, F. G. (1993). Insect pathogen “Bt” controls peach twig borer on fruits and almonds. California Agriculture, 47, 4–6.Google Scholar
  8. Basta, A., & Spooner-Hart, R. (2003). Efficacy of an extract of Dorrigo pepper (Tasmannia stipitata) against two-spotted mite and greenhouse thrips. In G. A. C. Beattie & D. M. Watson (Eds.), Spray oils beyond 2000: Sustainable pest and disease management. Canberra: ACIAR.Google Scholar
  9. Beattie, A., et al. (2002). Evaluation of rapeseed-based plant oils for control of citrus leafminer and their phytotoxicity to lemon. In Spray oils beyond 2000. University of Western Sydney.Google Scholar
  10. Beegle, C. C., & Yamamoto, T. (1992). History of Bacillus thuringiensis Berliner research and development. Canadian Entomologist, 124, 587–616.CrossRefGoogle Scholar
  11. Begum, M., Gurr, G. M., Wratten, S. D., & Nicol, N. I. (2004). Flower colour affects tri-trophic biocontrolinteractions. Biological Control, 30, 584–590.CrossRefGoogle Scholar
  12. Blommers, L. H. M. (1994). Integrated pest management in European apple orchards. Annual Review of Entomology, 39, 213–241.CrossRefGoogle Scholar
  13. Boscheri, S., Rizzoli, W., & Paoli, N. (1992). Experience with mating disruption for control of the codling moth and leafrollers at the Laimburg Experiment Station (South Tirol-Bolzano). Int Org Biol Control West Palearct Reg Sect Bull, 15(5), 81–87.Google Scholar
  14. Burgel, K., Daniel, C., & Wyss, E. (2005). Effects of autumn kaolin treatments on the rosy apple aphid, Dysaphis plantaginea (Pass.) and possible modes of action. Journal of Applied Entomology, 129, 311–314.CrossRefGoogle Scholar
  15. Campbell, R. J. (Ed.). (1992). A guide to mangoes in Florida. Miami: Fairchild Tropical Garden.Google Scholar
  16. Cheok, C. Y., Salman, H. A. K., & Sulaiman, R. (2014). Extraction and quantification of saponins: A review. Food Research International, 59, 16–40.CrossRefGoogle Scholar
  17. Cossentine, J. E., Banham, F. L., & Jensen, L. B. (1990). Efficacy of the nematode Heterorhabditis heliothidis (Rhabditida: Heterorhabditidae) against peachtree borer, Synanthedon exitiosa (Lepidoptera: Sesiidae) in peach trees. Journal of the Entomological Society of British Columbia, 87, 82–84.Google Scholar
  18. Cottrell, T. E., Wood, B. W., & Reilly, C. C. (2002). Particle film affects black pecan aphid (Homoptera: Aphididae) on pecan. Journal of Economic Entomology, 95, 782–788.CrossRefGoogle Scholar
  19. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., et al. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 807–813.PubMedPubMedCentralGoogle Scholar
  20. Daane, K. M., Sime, K. R., & Dahlsten, D. L. (2005). The biology of Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae), a parasitoid of the red gum lerp psyllid (Hemiptera: Psylloidea). Biological Control, 32, 228–235.CrossRefGoogle Scholar
  21. Da Silva, P., Eyraud, V., Carre-Pierrat, M., Sivignon, C., Rahioui, I., Royer, C., et al. (2012). High toxicity and specificity of the saponin 3-GlcA- 28-AraRhaxylmedicagenate, from Medicago truncatula seeds, for Sitophilus oryzae. BMC Chemical Biology, 12, 3.CrossRefGoogle Scholar
  22. De Geyter, E. D., Lambert, E., Geelen, D., & Smagghe, G. (2007). Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technology, 1(2), 96–105.Google Scholar
  23. De, K., & Pande, Y. D. (1987). Evaluation of certain non-insecticidal methods of reducing infestation of the mango nut weevil, Sternochetus gravis (F.) in India. Tropical Pest Management, 33, 27–28.CrossRefGoogle Scholar
  24. Delate, K., McKern, A., & Turnbull, R. (2005). Integrated approaches to organic pest management in the Midwestern U.S.A.: Case studies of three crops. Organic Research May: 8N–15N.Google Scholar
  25. De Reede, R. H., Gruys, P., & Vaal, F. (1985). Leafrollers in apple IPM under regimes based on Bacillus thuringiensis, on diflubenzuron, or on epofenonane. Entomologia Experimentalis et Applicata, 37, 263–274.CrossRefGoogle Scholar
  26. Devi, A. N., & Arumugam, T. (2005). Studies on the shelf life and quality of Rasthali banana as affected by postharvest treatments. Orissa Journal of Horticutlture, 33(2), 3–6.Google Scholar
  27. Faizal, A., & Geelen, D. (2013). Saponins and their role in biological processes in plants. Phytochemistry Reviews, 12, 877–893.CrossRefGoogle Scholar
  28. Falcon, L. A., Kane, W. R. & Bethel, R. S. (1968). Preliminary evaluation of a granulosis virus for control of the codling moth. Journal of Economic Entomology, 61, 1208–1213.Google Scholar
  29. Garczynski, S. F., & Siegel, J. P. (2007). Bacteria. See Ref. 95, 175–97.Google Scholar
  30. Glenn, D. M., & Puterka, G. J. (2005). Particle films: A new technology for agriculture. Horticultural Reviews, 31, 1–44.Google Scholar
  31. Glenn, D. M., Puterka, G., Venderzwet, T., Byers, R. E., & Feldhake, C. (1999). Hydrophobic particle films: A new paradigm for suppression of arthropod pests and plant diseases. Journal of Economic Entomology, 92, 759–771.CrossRefGoogle Scholar
  32. Glenn, D. M., Prado, E., Erez, A., & Puterka, G. J. (2002). A reflective, processed-kaolin particle film affects fruit temperature, radiation reflection and solar injury in apple. Journal of the American Society for Horticultural Science, 127, 188–193.CrossRefGoogle Scholar
  33. Goettel, M. S., Eilenberg, J., & Glare, T. R. (2005). Entomopathogenic fungi and their role in regulation of insect populations. In L. I. Gilbert, K. Iatrou, & S. Gill (Eds.), Comprehensive molecular insect science (Control) (Vol. 6, pp. 361–406). Oxford: Elsevier/Pergamon. 470 pp.CrossRefGoogle Scholar
  34. Grewal, P. S., Ehlers, R.-U., & Shapiro-Ilan, D. I. (Eds.). (2005). Nematodes as biocontrol agents. Cambridge, MA: CABI. 505 pp.Google Scholar
  35. Groner, A. (1990). Safety to nontarget invertebrates of baculoviruses. In M. Laird, L. A. Lacey, & E. W. Davidson (Eds.), Safety of microbial insecticides (pp. 135–147). Boca Raton: CRC Press.Google Scholar
  36. Harrison, R. D., & Gardner, W. A. (1991). Occurrence of entomogenous fungus Beauveria bassiana in pecan orchard soils in Georgia. Journal of Entomological Science, 26, 360–366.CrossRefGoogle Scholar
  37. Huber, J. (1986). Use of baculoviruses in pest management programs. In R. R. Granados, & B. A. Federici (Eds.), The biology of baculoviruses. Vol. II: Practical Application for Insect Control (pp. 181–202). CRC Press, Boca Raton.Google Scholar
  38. Jones, R. W., & Prusky, D. (2001). Expression of an antifungal peptide in Saccharomyces: A new approach for biocontrol of the postharvest disease caused by Colletotrichum coccodes. Phytopathology, 92, 33–37.CrossRefGoogle Scholar
  39. Kaya, H. K., & Lacey, L. A. (2007). Introduction to microbial control. See Ref. 95, 3–7.Google Scholar
  40. Kehrli, P., & Wyss, E. (2001). Effects of augmentative releases of the coccinellid, Adalia bipunctata, and of insecticide treatments in autumn on the spring population of aphids of the genus Dysaphis in apple orchards. Entomol Exp Appl, 99, 245–252.CrossRefGoogle Scholar
  41. Kerns, D. L., & Wright, G. C. (2001). Citrus and deciduous fruit and nut research report. Tucson: College of Agriculture and Life Sciences, University of Arizona.Google Scholar
  42. Kharkwal, H., Panthari, P., Pant, M. K., Kharkwal, H., Kharkwal, A. C., & Joshi, D. D. (2012). Foaming glycosides: A review. IOSR Journal of Pharmacy, 2(5), 23–28.CrossRefGoogle Scholar
  43. Knight, A. L., Unruh, T. R., Christianson, B. A., Puterka, G. J., & Glenn, D. M. (2000). Effects of a kaolin-based particle film on the obliquebanded leafroller (Lepidoptera: Tortricidae). Journal of Economic Entomology, 93, 744–749.CrossRefGoogle Scholar
  44. Korsten, L., Lonsdale, J. H., De Villiers, E. E., & De Jager, E. S. (1992). Pre-harvest control of mango diseases. South African Mango Growers’ Association Yearbook, 12, 72–78.Google Scholar
  45. Kuske, S., Daniel, C., Wyss, E., Sarraquigne, J. P., Jermini, M., Conedera, M., & Grunder, J. M. (2005). Biocontrol potential of entomopathogenic nematodes against nut and orchard pests. Insect Pathogens and Insect Parasitic Nematodes: Melolontha, 28(2), 163–167.Google Scholar
  46. Lacey, L. A., & Siegel, J. P. (2000). Safety and ecotoxicology of entomopathogenic bacteria. In J. F. Charles, A. Delecluse, & C. Nielsen-LeRoux (Eds.), Entomopathogenic bacteria: From laboratory to field application (pp. 253–273). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  47. Lacey, L. A., Arthurs, S. P., & Headrick, H. (2005). Comparative activity of the codling moth granulovirus against Grapholita molesta and Cydia pomonella (Lepidoptera: Tortricidae). Journal Entomological Society of British Columbia, 102, 79–80.Google Scholar
  48. Lacey, L. A., Arthurs, S. P., Knight, A., & Huber, J. (2007). Microbial control of lepidopteran pests of apple orchards. See Ref. 95, 527–46.Google Scholar
  49. Lapointe, S. L. (2000). Particle film deters oviposition by Diaprepes abbreviatus (Coleoptera: Curculionidae). Journal of Economic Entomology, 93, 1459–1463.CrossRefGoogle Scholar
  50. Lezama-Gutierrez, R., Trujillo, A., Molina-Ochoa, J., Rebolledo-Dominguez, O., Pescador, A., Lopez-Edwards, M., & Aluja, M. (2000). Virulence of Metarrizium anisopliae (Deuteromycotina: Hypomycetes) on Anastrepha ludens (Diptera: Tephritidae): Laboratory and field trials. Journal of Economic Entomology, 93, 1080–1084.CrossRefGoogle Scholar
  51. Lindegren, J. E., Agudelo-Silva, F., Valero, K. A., & Curtis, C. E. (1987). Comparative small-scale field application of Steinernema feltiae for navel orangeworm control. Journal of Nematology, 19, 503–504.PubMedPubMedCentralGoogle Scholar
  52. Lacey LA, Siegel JP, Charles J-F, Delecluse A, Nielsen-LeRoux C (2000) Entomopathogenic Bacteria: From Laboratory to Field Application. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  53. Mazor, M., & Erez, A. (2004). Processed kaolin protects fruits from Mediterranean fruit fly infestations. Crop Protection, 23, 47–51.CrossRefGoogle Scholar
  54. Melgarejo, P., Martinez, J. T., Hernandez, F. C. A., Martinez-Font, R., Barrows, P., & Erez, A. (2004). Kaolin treatment to reduce pomegranate sunburn. Scientia Horticulturae-Amsterdam, 100, 349–353.CrossRefGoogle Scholar
  55. Miller, L. K. (1997). Introduction to the baculoviruses. In L. K. Miller (Ed.), The baculoviruses (pp. 1–6). New York: Plenum Press.CrossRefGoogle Scholar
  56. Moghimipour, E., & Handali, S. (2015). Saponin: Properties, methods of evaluation and applications. Annual Review & Research in Biology, 5(3), 207–220.CrossRefGoogle Scholar
  57. Moses, T., Papadopoulou, K. K., & Osbourn, A. (2014). Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Critical Reviews in Biochemistry and Molecular Biology, 49(6), 439–462.CrossRefGoogle Scholar
  58. Murray, B. I. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 603–608.CrossRefGoogle Scholar
  59. Ntalli, N. G., & Menkissoglu-Spiroudi, U. (2011). Pesticides of botanical origin: A promising tool in plant protection. pp. 3–24. In M. Stoytcheva (Ed.), Pesticides – formulations, effects, fate, Prof. Margarita Stoytcheva (Ed.), (p. 808). ISBN: 978-953-307-532-7, InTech, Available from: http://www.intechopen.com/books/pesticides-formulations-effectsfate/pesticides-ofbotanical-origin-a-promising-tool-in-plant-protection
  60. Pari, P., Carli, G., Molinari, F., & Cravedi, P. (1993). Evaluations de l’efficacit’e de Bacillus thuringiensis Berliner contre Cydia molesta (Busck). Bulletin OILB/SROP, 16, 38–41.Google Scholar
  61. Pasqualini, E., Civolani, S., & Corelli Grappadelli, L. (2002). Particle film technology: Approach for a biorational control of Cacopsylla pyri (Rynchota: Psyllidae) in northern Italy. Bulletin Insect, 55, 39–42.Google Scholar
  62. Peng, R. K., & Christian, K. (2005). Integrated pest management in mango orchards in the Northern Territory Australia, using the weaver ant, Oecophyllasmaragdina, (Hymenoptera: Formicidae) as a key element. International Journal of Pest Management, 51(2), 149–155.  https://doi.org/10.1080/09670870500131749CrossRefGoogle Scholar
  63. Puterka, G., Glenn, D. M., Sekutowski, D. G., Unruh, T. R., & Jones, S. K. (2000). Progress toward liquid formulations of particle films for insect and disease control in pear. Environmental Entomology, 29, 329–339.CrossRefGoogle Scholar
  64. Saour, G., & Makee, H. (2004). A kaolin-based particle film for suppression of the olive fruit fly Bactrocera oleae Gmelin (Dip., Tephritidae) in olive groves. Journal of Applied Entomology, 128, 28–31.CrossRefGoogle Scholar
  65. Shapiro-Ilan, D. I. (2003). Microbial control of the pecan weevil, Curculio caryae. In J. D. Dutcher, M. K. Harris, & D. A. Dean (Eds.), Integration of chemical and biological insect control in native, seedling, and improved pecan production, (pp. 100–14). Southwest. Entomol. Suppl. No. 27.Google Scholar
  66. Shapiro-Ilan, D. I., Gouge, D. H., & Koppenhofer, A. M. (2002a). Factors affecting commercial success: Case studies in cotton, turf and citrus. See Ref. 58, 333–55.Google Scholar
  67. Shapiro-Ilan, D. I., Mizell, R. F. I. I. I., & Campbell, J. F. (2002b). Susceptibility of the plum curculio, Conotrachelus nenuphar, to entomopathogenic nematodes. Journal of Nematology, 34, 246–249.PubMedPubMedCentralGoogle Scholar
  68. Shapiro-Ilan, D. I., Gardner, W. A., Fuxa, J. R., Wood, B. W., Nguyen, K. B., et al. (2003). Survey of entomopathogenic nematodes and fungi endemic to pecan orchards of the southeastern US and their virulence to the pecan weevil (Coleoptera: Curculionidae). Environmental Entomology, 32, 187–195.CrossRefGoogle Scholar
  69. Shapiro-Ilan, D. I., Cottrell, T., & Gardner, W. A. (2004). Trunk perimeter applications of Beauveria bassiana to suppress adult Curculio caryae (Coleoptera: Curculionidae). Journal of Entomological Science, 39, 337–349.CrossRefGoogle Scholar
  70. Showler, A. T. (2002). Effects of kaolin-based particle film application on boll weevil (Coleoptera: Curculionidae) injury in cotton. Journal of Economic Entomology, 95, 754–762.CrossRefGoogle Scholar
  71. Silimela, M., & Korsten, L. (2006). Evaluation of pre-harvest Bacillus licheniformis sprays to control mango fruit diseases. Crop Protection, 26, 1471–1481.Google Scholar
  72. Steinkraus, D. C. (2007). Documentation of naturally-occurring pathogens and their impact in agroecosystems. See Ref. 95, 267–81.Google Scholar
  73. Tanada, Y. (1964). A granulosis virus of the codling moth, Carpocapsae pomonella (Linnaeus) (Olethreutidae, Lepidoptera). Journal og Insect Pathology, 6, 378–380.Google Scholar
  74. Taylor, W. G., Fields, P. G., & Sutherland, D. H. (2004). Insecticidal components from field pea extracts: Soyasaponins and lysolecithins. Journal of Agricultural and Food Chemistry, 52, 7484–7490.CrossRefGoogle Scholar
  75. Tedders, W. L., Weaver, D. J., & Wehunt, E. J. (1973). Pecan weevil: Suppression of larvae with the fungi Metarhizium anisopliae and Beauveria bassiana and the nematode Neoaplectana dutkyi. Journal of Economic Entomology, 66, 723–725.CrossRefGoogle Scholar
  76. Tiwari, R. K. S., Ashok, S., Rajput, M. L., & Bisen, R. K. (2006). Relative susceptibility of mango varieties to powdery mildew caused by Oidium mangiferae. Advances in Plant Sciences, 19, 181–183.Google Scholar
  77. Vail, P. V., Hoffmann, D. F., Streett, D. A., Manning, J. S., & Tebbets, J. S. (1993). Infectivity of a nuclear polyhedrosis virus isolated from Anagrapha falcifera (Lepidoptera: Noctuidae) against production and postharvest pests and homologous lines. Environmental Entomology, 22, 1140–1145.CrossRefGoogle Scholar
  78. Vincken, J. P., Heng, L., de Groot, A., & Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68, 275–297.CrossRefGoogle Scholar
  79. Wraight, S. P., Inglis, G. D., & Goettel, M. S. (2007). Fungi. See Ref. 95, 223–48.Google Scholar
  80. Wyss, E., & Daniel, C. (2004). Effects of autumn kaolin and pyrethrin treatments on the spring population of Dysaphis plantaginea in apple orchards. Journal of Applied Entomology, 128, 147–149.CrossRefGoogle Scholar
  81. Wyss, E., Villiger, M., Hemptinne, J-L., & Müller-Schärer, H. (1999). Effects of augmentative releases of eggs and larvae of the two-spot ladybird beetle, Adalia bipunctata, on the abundance of the rosy apple aphid, Dysaphis plantaginea, in organic apple orchards. Entomol Exp Appl, 90, 167–173.CrossRefGoogle Scholar
  82. Yee, W. L., & Lacey, L. A. (2003). Stage-specific mortality of Rhagoletis indifferens (Diptera: Tephritidae) exposed to three species of Steinernema nematodes. Biological Control, 27, 349–356.CrossRefGoogle Scholar
  83. Zehnder, G., Gurr, G. M., Kuhne, S., Wade, M. R., Wratten, S. D., & Wyss, E. (2007). Arthropod pest management in organic crops. Annual Review of Entomology, 52, 57–80.Google Scholar
  84. Zimmermann, G. (2005). Pilzpräparate. In H. Schmutterer & J. Huber (Eds.), Natürliche Schädlings bekämpfungsmittel (pp. 87–109). Stuttgart: Ulmer-verlag.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. Usha
    • 1
  • Pankaj Kumar
    • 1
  • B. Singh
    • 2
  1. 1.Division of Fruits and Horticultural TechnologyIARINew DelhiIndia
  2. 2.CESCRA, ICAR-IARINew DelhiIndia

Personalised recommendations