Advertisement

An Efficient Algorithm for Enumerating Induced Subgraphs with Bounded Degeneracy

  • Kunihiro Wasa
  • Takeaki Uno
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)

Abstract

We propose a polynomial delay and polynomial space algorithm for the enumeration of k-degenerate induced subgraphs in a given graph. A graph G is k-degenerate if each of its induced subgraphs has a vertex of degree at most k. The degeneracy is considered as an indicator of the sparseness of the graph. Real-world graphs such as road networks, social networks and internet networks often have small degeneracy. Compared to other kinds of graph classes, bounded degeneracy does not give many structural properties such as induced subgraph free, or minor free. From this, using bounded degeneracy to reduce the time complexity is often not trivial. In this paper, we investigate ways of handling the degeneracy and propose an efficient algorithm for the k-degenerate induced subgraph enumeration. The time complexity is \(\mathcal {O}\left( \min \left\{ \varDelta + kk', (k')^2\right\} \right) \) time per solution with polynomial preprocessing time and the space complexity is linear in the input graph size, where \(\varDelta \) and \(k'\) are the maximum degree and the degeneracy of the input graph.

Keywords

Graph algorithms Enumeration algorithms Polynomial delay k-degenerate graphs 

References

  1. 1.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discret. Appl. Math. 65(1–3), 21–46 (1996).  https://doi.org/10.1016/0166-218X(95)00026-NMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bauer, R., Krug, M., Wagner, D.: Enumerating and generating labeled \(k\)-degenerate Graphs. In: ANALCO 2010, pp. 90–98. Society for Industrial and Applied Mathematics (2010).  https://doi.org/10.1137/1.9781611973006.12
  3. 3.
    Chartrand, G., Harary, F.: Planar permutation graphs. Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques 3(4), 433–438 (1967)Google Scholar
  4. 4.
    Conte, A., Grossi, R., Marino, A., Versari, L.: Sublinear-space bounded-delay enumeration for massive network analytics: maximal cliques. In: ICALP 2016, pp. 148:1–148:15 (2016).  https://doi.org/10.4230/LIPIcs.ICALP.2016.148
  5. 5.
    Conte, A., Kanté, M.M., Otachi, Y., Uno, T., Wasa, K.: Efficient enumeration of maximal k-degenerate subgraphs in a chordal graph. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 150–161. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62389-4_13CrossRefGoogle Scholar
  6. 6.
    Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 364–375. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20662-7_31CrossRefGoogle Scholar
  7. 7.
    Ferreira, R., Grossi, R., Rizzi, R.: Output-sensitive listing of bounded-size trees in undirected graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 275–286. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23719-5_24CrossRefGoogle Scholar
  8. 8.
    Goel, G., Gustedt, J.: Bounded arboricity to determine the local structure of sparse graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 159–167. Springer, Heidelberg (2006).  https://doi.org/10.1007/11917496_15CrossRefGoogle Scholar
  9. 9.
    Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: Enumeration of minimal dominating sets and variants. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 298–309. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22953-4_26CrossRefzbMATHGoogle Scholar
  10. 10.
    Lick, D.R., White, A.T.: \(k\)-degenerate graphs. Can. J. Math. 22(5), 1082–1096 (1970).  https://doi.org/10.4153/CJM-1970-125-1MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring algorithms. J. ACM 30(3), 417–427 (1983).  https://doi.org/10.1145/2402.322385MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wasa, K.: Enumeration of enumeration algorithms. CoRR abs/1605.05102 (2016), http://arxiv.org/abs/1605.05102
  13. 13.
    Wasa, K., Arimura, H., Uno, T.: Efficient enumeration of induced subtrees in a K-degenerate graph. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 94–102. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13075-0_8CrossRefGoogle Scholar
  14. 14.
    Wasa, K., Kaneta, Y., Uno, T., Arimura, H.: Constant time enumeration of bounded-size subtrees in trees and its application. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 347–359. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32241-9_30CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Institute of InformaticsTokyoJapan

Personalised recommendations