Advertisement

Makespan Minimization on Unrelated Parallel Machines with Simple Job-Intersection Structure and Bounded Job Assignments

  • Daniel R. Page
  • Roberto Solis-Oba
  • Marten Maack
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)

Abstract

Let there be a set J of n jobs and a set M of m parallel machines, where each job j takes \(p_{i,j} \in \mathbb {Z}^+\) time units on machine i and assume \(p_{i,j}=\infty \) implies job j cannot be scheduled on machine i. In makespan minimization on unrelated parallel machines (\(R||C_{max}\)), the goal is to schedule each job non-preemptively on a machine so as to minimize the makespan. A job-intersection graph \(G_J=(J,E_J)\) is an unweighted undirected graph where there is an edge \(\{j,j'\} \in E_J\) if there is a machine i such that both \(p_{i,j}\ne \infty \) and \(p_{i,j'} \ne \infty \). In this paper we consider two variants of \(R||C_{max}\) where there are a small number of eligible jobs per machine. First, we prove that there is no approximation algorithm with approximation ratio better than 3/2 for \(R||C_{max}\) when restricted to instances where the job-intersection graph contains no diamonds, unless Open image in new window . Second, we match this lower bound by presenting a 3/2-approximation algorithm for this special case of \(R||C_{max}\), and furthermore show that when \(G_J\) is triangle free \(R||C_{max}\) is solvable in polynomial time. For \(R||C_{max}\) restricted to instances when every machine can process at most \(\ell \) jobs, we give approximation algorithms with approximation ratios 3/2 and 5/3 for \(\ell =3\) and \(\ell =4\) respectively, a polynomial-time algorithm when \(\ell =2\), and prove that it is Open image in new window -hard to approximate the optimum solution within a factor less than 3/2 when \(\ell \ge 3\). In the special case where every \(p_{i,j} \in \{p_j, \infty \}\), called the restricted assignment problem, and there are only two job lengths \(p_j \in \{\alpha ,\beta \}\) we present a \((2-1/(\ell -1))\)-approximation algorithm when \(\ell \ge 3\).

Keywords

Makespan minimization Unrelated parallel machines Approximation algorithms Restricted assignment Bounded job assignments Job-intersection graphs 

References

  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asahiro, Y., Jansson, J., Miyano, E., Ono, H., Zenmyo, K.: Approximation algorithms for the graph orientation minimizing the maximum weighted outdegree. J. Comb. Optim. 22(1), 78–96 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Asahiro, Y., Miyano, E., Ono, H.: Graph classes and the complexity of the graph orientation minimizing the maximum weighted outdegree. Discret. Appl. Math. 159(7), 498–508 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brandstädt, A., Le, V., Spinrad, J.: Graph Classes: A Survey. SIAM, Philadelphia (1999)CrossRefGoogle Scholar
  5. 5.
    Chakrabarty, D., Khanna, S., Li, S.: On (1, \(\varepsilon \))-restricted assignment makespan minimization. In: 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1087–1101 (2015)Google Scholar
  6. 6.
    Chang, P.Y., Damodaran, P., Melouk, S.: Minimizing makespan on parallel batch processing machines. Int. J. Prod. Res. 42(19), 4211–4220 (2004)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Jansen, K., Luo, W., Zhang, G.: An efficient PTAS for parallel machine scheduling with capacity constraints. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 608–623. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48749-6_44CrossRefGoogle Scholar
  8. 8.
    Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: a special case of scheduling unrelated parallel machines. Algorithmica 68(1), 62–80 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: a special case of scheduling unrelated parallel machines. In: 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 483–490 (2008)Google Scholar
  10. 10.
    Gairing, M., Monien, B., Woclaw, A.: A faster combinatorial approximation algorithm for scheduling unrelated parallel machines. Theor. Comput. Sci. 380(1), 87–99 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Glass, C., Kellerer, H.: Parallel machine scheduling with job assignment restrictions. Nav. Res. Logist. (NRL) 54(3), 250–257 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Graham, R., Lawler, E., Lenstra, J., Rinnooy, K.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Huang, C., Ott, S.: A combinatorial approximation algorithm for graph balancing with light hyper edges. In: 24th Annual European Symposium on Algorithms. LIPIcs, vol. 57, pp. 49:1–49:15 (2016)Google Scholar
  14. 14.
    Jansen, K., Maack, M., Solis-Oba, R.: Structural parameters for scheduling with assignment restrictions. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 357–368. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57586-5_30CrossRefGoogle Scholar
  15. 15.
    Jansen, K., Maack, M., Solis-Oba, R.: Structural parameters for scheduling with assignment restrictions. CoRR abs/1701.07242 (2017). http://arxiv.org/abs/1701.07242
  16. 16.
    Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently. Inf. Process. Lett. 74(3–4), 115–121 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lee, K., Leung, J.Y.T., Pinedo, M.: A note on graph balancing problems with restrictions. Inf. Process. Lett. 110(1), 24–29 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lenstra, J., Shmoys, D., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46(1–3), 259–271 (1990)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Leung, J.Y.T., Li, C.L.: Scheduling with processing set restrictions: a literature update. Int. J. Prod. Econ. 175, 1–11 (2016)CrossRefGoogle Scholar
  20. 20.
    Li, S., Li, G., Zhang, S.: Minimizing makespan with release times on identical parallel batching machines. Discret. Appl. Math. 148(1), 127–134 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lin, Y., Li, W.: Parallel machine scheduling of machine-dependent jobs with unit-length. Eur. J. Oper. Res. 156(1), 261–266 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Page, D.R., Solis-Oba, R.: A 3/2-approximation algorithm for the graph balancing problem with two weights. Algorithms 9(2), 38 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Saha, B., Srinivasan, A.: A new approximation technique for resource-allocation problems. In: 1st Annual Symposium on Innovations in Computer Science, pp. 342–357 (2010)Google Scholar
  24. 24.
    Shchepin, E., Vakhania, N.: An optimal rounding gives a better approximation for scheduling unrelated machines. Oper. Res. Lett. 33, 127–133 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Williamson, D., Shmoys, D.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceWestern UniversityLondonCanada
  2. 2.Department of Computer ScienceUniversity of KielKielGermany

Personalised recommendations