Advertisement

Related Machine Scheduling with Machine Speeds Satisfying Linear Constraints

  • Siyun Zhang
  • Kameng Nip
  • Zhenbo Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)

Abstract

We propose a related machine scheduling problem in which the speeds of machines are variables and must satisfy a system of linear constraints, and the processing times of jobs are given and known. The objective is to decide the speeds of machines and minimize the makespan of the schedule among all the feasible choices. The problem is motivated by some practical application scenarios. This problem is strongly NP-hard in general, and we discuss various cases of it. In particular, we obtain a polynomial time algorithm when there is one linear constraint. If the number of constraints is more than one and the number of machines is a fixed constant, then we give a \((2+\epsilon )\)-approximation algorithm. For the case where the number of machines is an input of the problem instance, we propose several approximation algorithms, and obtain a PTAS when the number of distinct machine speeds is a fixed constant.

Keywords

Related machine scheduling Linear programming Approximation algorithm 

Notes

Acknowledgments

This work has been supported by NSFC No. 11801589, No. 11771245 and No. 11371216. We also thank Tianning Shi for helpful discussions on this work.

References

  1. 1.
    Möhring, R.H., Radermacher, F.J., Weiss, G.: Stochastic scheduling problems I-general strategies. Zeitschrift für Oper. Res. 28(7), 193–260 (1984)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Daniels, R.L., Kouvelis, P.: Robust scheduling to hedge against processing time uncertainty in single-stage production. Manag. Sci. 41(2), 363–376 (1995)CrossRefGoogle Scholar
  3. 3.
    Nip, K., Wang, Z., Wang, Z.: Scheduling under linear constraints. Eur. J. Oper. Res. 253(2), 290–297 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wang, Z., Nip, K.: Bin packing under linear constraints. J. Comb. Optim. 34(4), 1198–1209 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nip, K., Wang, Z., Wang, Z.: Knapsack with variable weights satisfying linear constraints. J. Glob. Optim. 69(3), 713–725 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46(1), 259–271 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM J. Comput. 17(3), 539–551 (1988)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)MathSciNetGoogle Scholar
  9. 9.
    Köppe, M.: On the complexity of nonlinear mixed-integer optimization. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 533–557. Springer, New York (2012).  https://doi.org/10.1007/978-1-4614-1927-3_19CrossRefzbMATHGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  11. 11.
    Dobson, G.: Scheduling independent tasks on uniform processors. SIAM J. Comput. 13(4), 705–716 (1984)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM J. Comput. 9(1), 91–103 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gonzalez, T., Ibarra, O.H., Sahni, S.: Bounds for LPT schedules on uniform processors. SIAM J. Comput. 6(1), 155–166 (1977)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Friesen, D.K.: Tighter bounds for LPT scheduling on uniform processors. SIAM J. Comput. 16(3), 554–560 (1987)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kovács, A.: New approximation bounds for LPT scheduling. Algorithmica 57(2), 413–433 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kunde, M.: A multifit algorithm for uniform multiprocessor scheduling. In: Cremers, A.B., Kriegel, H.-P. (eds.) GI-TCS 1983. LNCS, vol. 145, pp. 175–185. Springer, Heidelberg (1982).  https://doi.org/10.1007/BFb0036479CrossRefGoogle Scholar
  17. 17.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34(1), 144–162 (1987)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kovács, A.: Tighter approximation bounds for LPT scheduling in two special cases. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 187–198. Springer, Heidelberg (2006).  https://doi.org/10.1007/11758471_20CrossRefGoogle Scholar
  19. 19.
    Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: complexity, algorithms and approximability. In: Du, D., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization: Volume 1–3, pp. 1493–1641. Springer, Boston (1998).  https://doi.org/10.1007/978-1-4613-0303-9_25CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesTsinghua UniversityBeijingChina
  2. 2.School of Mathematics (Zhuhai)Sun Yat-sen UniversityZhuhaiChina

Personalised recommendations