Upper and Lower Bounds for Different Parameterizations of (n,3)-MAXSAT

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)


In this paper, we consider the (n,3)-MAXSAT problem. The problem is a special case of the Maximum Satisfiability problem with an additional requirement that in input formula each variable appears at most three times. Here, we improve previous upper bounds for (n,3)-MAXSAT in terms of n (number of variables) and in terms of k (number of clauses that we are required to satisfy). Moreover, we prove that satisfying more clauses than the simple all true assignment is an NP-hard problem.


Maximum satisfiability Exact algorithms Parameterization above guarantee 



We would like to thank Sergey Kopeliovich for discussions in early stage of the project and Danil Sagunov as well as the anonymous reviewers for valuable comments that improved the presentation of this paper.


  1. 1.
    Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. Algorithmica 61(3), 638–655 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bansal, N., Raman, V.: Upper bounds for MaxSat: further improved. ISAAC 1999. LNCS, vol. 1741, pp. 247–258. Springer, Heidelberg (1999). Scholar
  3. 3.
    Basavaraju, M., Francis, M.C., Ramanujan, M., Saurabh, S.: Partially polynomial kernels for set cover and test cover. SIAM J. Discrete Math. 30(3), 1401–1423 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Battiti, R., Protasi, M.: Reactive search, a history-sensitive heuristic for MAX-SAT. J. Exp. Algorithmics (JEA) 2, 2 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berg, J., Hyttinen, A., Järvisalo, M.: Applications of MaxSAT in data analysis. Pragmatics of SAT (2015)Google Scholar
  6. 6.
    Bliznets, I., Golovnev, A.: A new algorithm for parameterized MAX-SAT. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 37–48. Springer, Heidelberg (2012). Scholar
  7. 7.
    Bliznets, I.A.: A new upper bound for (n, 3)-MAX-SAT. J. Math. Sci. 188(1), 1–6 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, J., Kanj, I.A.: Improved exact algorithms for MAX-SAT. Discrete Appl. Math. 142(1–3), 17–27 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, J., Xu, C., Wang, J.: Dealing with 4-variables by resolution: an improved MaxSAT algorithm. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 178–188. Springer, Cham (2015). Scholar
  10. 10.
    Crowston, R., Gutin, G., Jones, M., Raman, V., Saurabh, S., Yeo, A.: Fixed-parameter tractability of satisfying beyond the number of variables. Algorithmica 68(3), 739–757 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Crowston, R., Jones, M., Mnich, M.: Max-Cut parameterized above the edwards-erdős bound. Algorithmica 72(3), 734–757 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010). Scholar
  13. 13.
    Gutin, G., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gutin, G., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem parameterized above guaranteed value. Theory Comput. Syst. 41(3), 521–538 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kojevnikov, A., Kulikov, A.S.: A new approach to proving upper bounds for MAX-2-SAT. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 11–17. Society for Industrial and Applied Mathematics (2006)Google Scholar
  16. 16.
    Kulikov, A.S., Kutskov, K.: New upper bounds for the problem of maximal satisfiability. Discrete Math. Appl. 19(2), 155–172 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, W., Xu, C., Wang, J., Yang, Y.: An improved branching algorithm for (n, 3)-MaxSAT based on refined observations. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017 Part II. LNCS, vol. 10628, pp. 94–108. Springer, Cham (2017). Scholar
  18. 18.
    Lin, P.C.K., Khatri, S.P.: Application of MAX-SAT-based atpg to optimal cancer therapy design. BMC Genomics 13(6), S5 (2012)CrossRefGoogle Scholar
  19. 19.
    Madathil, J., Saurabh, S., Zehavi, M.: Max-Cut Above Spanning Tree is fixed-parameter tractable. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol. 10846, pp. 244–256. Springer, Cham (2018). Scholar
  20. 20.
    Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. J. Algorithms 36(1), 63–88 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Poloczek, M., Schnitger, G., Williamson, D.P., Van Zuylen, A.: Greedy algorithms for the maximum satisfiability problem: simple algorithms and inapproximability bounds. SIAM J. Comput. 46(3), 1029–1061 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT problem. Inf. Processing Letters 65(1), 1–6 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Walter, R., Zengler, C., Küchlin, W.: Applications of MAXSAT in automotive configuration. In: Configuration Workshop, vol. 1, p. 21 (2013)Google Scholar
  25. 25.
    Xu, C., Chen, J., Wang, J.: Resolution and linear CNF formulas: improved (n, 3)-MaxSAT algorithms. Theor. Comput. Sci. (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of SciencesSaint PetersburgRussia

Personalised recommendations