Advertisement

Graph Problems with Obligations

  • Alexis Cornet
  • Christian Laforest
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)

Abstract

In this paper we study variants of well-known graph problems: vertex cover, connected vertex cover, dominating set, total dominating set, independent dominating set, spanning tree, connected minimum weighted spanning graph, matching and hamiltonian path. Given a graph \(G=(V,E)\), we add a partition \(\varPi _{V}\) (resp. \(\varPi _{E}\)) of its vertices (resp. of its edges). Now, any solution S containing an element (vertex or edge) of a part of this partition must also contain all the others ones. In other words, elements can only be added set by set, instead of one by one as in the classical situation (corresponding to obligations that are singletons). A motivation is to give a general framework and to study the complexity of combinatorial problems coming from systems where elements are interdependent. We propose hardness and approximation results.

Keywords

Graph problems Approximation algorithms Hardness 

References

  1. 1.
    Ausiello, G., et al.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-58412-1CrossRefGoogle Scholar
  2. 2.
    Chlebík, M., Chlebíková, J.: Approximation hardness of dominating set problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 192–203. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30140-0_19CrossRefGoogle Scholar
  3. 3.
    Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cornet, A., Laforest, C.: Total domination, connected vertex cover and Steiner tree with conflicts. Discret. Math. Theor. Comput. Sci. 19(3), Article 17 (2017)Google Scholar
  5. 5.
    Cornet, A., Laforest, C.: Domination problems with no conflicts. Discret. Appl. Math. 244, 327–338 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Delbot, F., Laforest, C., Phan, R.: Hardness results and approximation algorithms for discrete optimization problems with conditional and unconditional forbidden vertices. Research report hal-01257820, January 2016Google Scholar
  7. 7.
    Diestel, R.: Graph Theory. GTM, vol. 173, 4th edn. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-53622-3CrossRefzbMATHGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  9. 9.
    Kanté, M.M., Laforest, C., Momège, B.: An exact algorithm to check the existence of (elementary) paths and a generalisation of the cut problem in graphs with forbidden transitions. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 257–267. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35843-2_23CrossRefzbMATHGoogle Scholar
  10. 10.
    Kanté, M.M., Laforest, C., Momège, B.: Trees in graphs with conflict edges or forbidden transitions. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 343–354. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38236-9_31CrossRefzbMATHGoogle Scholar
  11. 11.
    Kanté, M.M., Moataz, F.Z., Momège, B., Nisse, N.: Finding paths in grids with forbidden transitions. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 154–168. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53174-7_12CrossRefzbMATHGoogle Scholar
  12. 12.
    Kolman, P., Pangrác, O.: On the complexity of paths avoiding forbidden pairs. Discret. Appl. Math. 157(13), 2871–2876 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kováč, J.: Complexity of the path avoiding forbidden pairs problem revisited. Discret. Appl. Math. 161(10), 1506–1512 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Laforest, C., Momège, B.: Some hamiltonian properties of one-conflict graphs. In: Kratochvíl, J., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 262–273. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19315-1_23CrossRefGoogle Scholar
  15. 15.
    Laforest, C., Momège, B.: Nash-Williams-type and Chvátal-type conditions in one-conflict graphs. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 327–338. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46078-8_27CrossRefzbMATHGoogle Scholar
  16. 16.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: STOC, pp. 475–484. ACM (1997)Google Scholar
  17. 17.
    Yinnone, H.: On paths avoiding forbidden pairs of vertices in a graph. Discret. Appl. Math. 74(1), 85–92 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.LIMOS (UMR CNRS 6158), Université Clermont-AuvergneClermont-FerrandFrance

Personalised recommendations