Advertisement

Generating Algebraic Expressions for Labeled Grid Graphs

  • Mark Korenblit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)

Abstract

The paper investigates relationship between algebraic expressions and labeled graphs. We consider directed grid graphs having m rows and n columns. Our intent is to simplify the expressions of these graphs. With that end in view, we describe two methods which generate expressions for directed grid graphs. For both methods, lengths of the expressions grow polynomially with n while m is determined as a constant parameter. Besides, we apply these methods to a square grid graph in which the number of rows is equal to the number of columns. We prove that the lengths of the expressions derived by the methods depend exponentially and quasi-polynomially, respectively, on the size of the graph.

References

  1. 1.
    Ball, W.W.R., Coxeter, H.S.M.: Mathematical Recreations and Essays, 13th edn. The Macmillan Company, Dover, New York (1987)Google Scholar
  2. 2.
    Bar-Noy, A., Cheilaris, P., Lampis, M., Mitsou, V., Zachos, S.: Ordered coloring grids and related graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 30–43. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11476-2_4CrossRefzbMATHGoogle Scholar
  3. 3.
    Bein, W.W., Brucker, P.: Greedy concepts for network flow problems. Discret. Appl. Math. 15(2–3), 135–144 (1986)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bein, W.W., Kamburowski, J., Stallmann, M.F.M.: Optimal reduction of two-terminal directed acyclic graphs. SIAM J. Comput. 21(6), 1112–1129 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Duffin, R.J.: Topology of series-parallel networks. J. Math. Anal. Appl. 10, 303–318 (1965)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Finta, L., Liu, Z., Milis, I., Bampis, E.: Scheduling UET-UCT series-parallel graphs on two processors. Theor. Comput. Sci. 162(2), 323–340 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Golumbic, M.C., Gurvich, V.: Read-once functions. In: Crama, Y., Hammer, P.L. (eds.) Boolean Functions: Theory, Algorithms and Applications, pp. 519–560. Cambridge University Press, New York (2011)Google Scholar
  8. 8.
    Golumbic, M.C., Mintz, A., Rotics, U.: Factoring and recognition of read-once functions using cographs and normality and the readability of functions associated with partial k-trees. Discret. Appl. Math. 154(10), 1465–1477 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Golumbic, M.C., Perl, Y.: Generalized Fibonacci maximum path graphs. Discret. Math. 28, 237–245 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grötschel, M., Martin, A., Weismantel, R.: Routing in grid graphs by cutting planes. ZOR - Math. Methods Oper. Res. 41(3), 255–275 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hosoya, H., Harary, F.: On the matching properties of three fence graphs. J. Math. Chem. 12, 211–218 (1993)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Irani, S.: Coloring inductive graphs on-line. Algorithmica 11(1), 53–72 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kaufmann, M., Gao, S., Thulasiraman, K.: On Steiner minimal trees in grid graphs and its application to VLSI routing. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 351–359. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58325-4_199CrossRefzbMATHGoogle Scholar
  14. 14.
    Kaufmann, M., Mehlhorn, K.: A linear-time algorithm for the homotopic routing problem in grid graphs. SIAM J. Comput. 23(2), 227–246 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kirousis, L.M., Thilikos, D.M.: The linkage of a graph. SIAM J. Comput. 25(3), 626–647 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Korenblit, M.: Decomposition methods for generating algebraic expressions of full square rhomboids and other graphs. Discret. Appl. Math. 228, 60–72 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Korenblit, M., Levit, V.E.: On algebraic expressions of series-parallel and Fibonacci graphs. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 215–224. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-45066-1_17CrossRefzbMATHGoogle Scholar
  18. 18.
    Krause, A.: Bounded Treewidth Graphs - A Survey German Russian Winter School, St. Petersburg, Russia (2003). http://wwwmayr.in.tum.de/konferenzen/Jass03/presentations/krause.pdf
  19. 19.
    Levit, V.E., Korenblit, M.: A symbolic approach to scheduling of robotic lines. In: Intelligent Scheduling of Robots and Flexible Manufacturing Systems. The Center for Technological Education Holon, Israel, pp. 113–125 (1996)Google Scholar
  20. 20.
    Mintz, A., Golumbic, M.C.: Factoring Boolean functions using graph partitioning. Discret. Appl. Math. 149(1–3), 131–153 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Monma, C.L.: Sequencing with series-parallel precedence constraints. Math. Oper. Res. 4(3), 215–224 (1979)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mundici, D.: Solution of Rota’s problem on the order of series-parallel networks. Adv. Appl. Math. 12, 455–463 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Noy, M., Ribó, A.: Recursively constructible families of graphs. Adv. Appl. Math. 32, 350–363 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Oikawa, M.K., Ferreira, J.E., Malkowski, S., Pu, C.: Towards algorithmic generation of business processes: from business step dependencies to process algebra expressions. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 80–96. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03848-8_7CrossRefGoogle Scholar
  25. 25.
    Satyanarayana, A., Wood, R.K.: A linear time algorithm for computing K-terminal reliability in series-parallel networks. SIAM J. Comput. 14(4), 818–832 (1985)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Savicky, P., Woods, A.R.: The number of Boolean functions computed by formulas of a given size. Rand. Struct. Algorithms 13, 349–382 (1998)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schmidt, J.P.: All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings. SIAM J. Comput. 27(4), 972–992 (1998)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sesh Kumar, K.S.: Convex relaxations for learning bounded-treewidth decomposable graphs. In: Proceedings of 30th International Conference on Machine Learning (ICML2013), JMLR: W&CP, vol. 28 (2013)Google Scholar
  29. 29.
    Tamir, A.: A strongly polynomial algorithm for minimum convex separable quadratic cost flow problems on two-terminal series-parallel networks. Math. Program. 59, 117–132 (1993)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wald, J.A., Colbourn, C.J.: Steiner trees in probabilistic networks. Microelectron. Reliabil. 23(5), 837–840 (1983)CrossRefGoogle Scholar
  31. 31.
    Wang, A.R.R.: Algorithms for multilevel logic optimization. Ph.D. thesis, University of California, Berkeley (1989)Google Scholar
  32. 32.
    Weisstein, E.W.: Grid Graph From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/GridGraph.html

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Holon Institute of TechnologyHolonIsrael

Personalised recommendations