Advertisement

Information Spreading in Social Network Through Explosive Percolation Theory

  • Xiaoxia Zhu
  • Jiaxin Song
  • Jianfang Meng
  • Jia LiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11280)

Abstract

In this paper, we use the explosive percolation theory to set up an information spreading model. We analyze useful parameters in largest cluster and information spreading rates, and discuss some rules of sudden outbreaks of information. By using simulation experiments, it is easy to see that there exists a critical point in the outbreak of information, and that information is most infective in the early stage, and gradually weakened as the time increases. Also, this paper provides some new insights on governance of information spreading in social networks through observing the simulation results.

Keywords

Information spreading Social network Explosive percolation 

References

  1. 1.
    Morales, A.J., Borondo, J., Losada, J.C., et al.: Efficiency of human activity on information spreading on Twitter. Soc. Netw. 39(1), 1–11 (2014)CrossRefGoogle Scholar
  2. 2.
    Martino, F., Spoto, A.: Social network analysis: a brief theoretical review and further perspectives in the study of information technology. Psychnology J. 4(1), 53–86 (2006)Google Scholar
  3. 3.
    Li, L., Sun, L., Yang, J.: Summary of social network research. Comput. Sci. 42(11), 8–21 (2015)Google Scholar
  4. 4.
    Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115(772), 700–721 (1927)CrossRefGoogle Scholar
  5. 5.
    Trpevski, D., Tang, W.K., Kocarey, L.: Model for rumor spreading over networks. Phys. Rev. E Stat. Nolinear Soft Matter Phys. 81(2), 1–11 (2010)Google Scholar
  6. 6.
    Wang, W., Jing, J.: Research on the Social Network-based Mechanism of public crisis information communication. Inf. Sci. 25(7), 979–982 (2007)Google Scholar
  7. 7.
    Boccaletti, S., Latora, V., Moreno, Y., et al.: Complex networks: structure and dynamics. Phys. Rep. 25(4), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wang, J., Zhao, L., Huang, R.: SIRaRu rumor spreading model in complex networks. Phys. Stat. Mech. Appl. 398(15), 43–55 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zan, Y., Wu, J., Li, P., et al.: SICR rumor spreading model in complex networks: counterattack and self-resistance. Phys. Stat. Mech. Appl. 405(405), 159–170 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhao, L.J., Pan, W.: Rumor spreading model with variable spreading and removal rate. J. Univ. Shanghai Sci. Technol. 36(4), 345–350 (2014)Google Scholar
  11. 11.
    Grabowski, A., Kosinski, R.A.: Percolation in real on-line networks. Acta Phys. Pol. 41(5), 1135–1142 (2010)Google Scholar
  12. 12.
    Son, S.W., Bizhani, G., Christensen, C., et al.: Percolation theory on interdependent networks based on epidemic spreading. EPL 97(1), 1–6 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, X., Kang, L., Song, M., et al.: Interactive behavior characteristic mining based on percolation theory for information spreading. J. Comput. Inf. Syst. 11(1), 133–140 (2015)Google Scholar
  14. 14.
    Zhao, D., Li, L., Peng, H., et al.: Multiple routes transmitted epidemics on multiplex networks. Phys. Lett. A 378(10), 770–776 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, X., Song, M., Guo, S., et al.: Information spreading in correlated microblog reposting network based on directed percolation theory. Acta Phys. Sin. 64(4), 182–189 (2015)Google Scholar
  16. 16.
    Rui, Z.: Communication and management of public opinion based on complex network. Mod. Inf. 36(04), 26–29 (2016)Google Scholar
  17. 17.
    Achlioptas, D., D’Souza, R.M., Spencer, J.: Explosive percolation in random networks. Science 323(5920), 1453–1455 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rozenfeld, H., Gallos, L., Makse, H.: Explosive percolation in the human protein homology network. Eur. Phys. J. B 75(3), 305–310 (2010)CrossRefGoogle Scholar
  19. 19.
    Pan, R.K., Kivela, M., Saramaki, J., et al.: Using explosive percolation in analysis of real-world networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 83(2), 1–6 (2011)Google Scholar
  20. 20.
    Radicchi, F.: Percolation in real interdependent networks. Nat. Phys. 11(7), 597–602 (2015)CrossRefGoogle Scholar
  21. 21.
    Bastas, N., Kosmidis, K., Argyrakis, P.: Explosive site percolation and finite-size hysteresis. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(6 Pt 2), 1–6 (2011)Google Scholar
  22. 22.
    D’Souza, R.M., Mitzenmacher, M.: Local cluster aggregation models of explosive percolation. Phys. Rev. Lett. 104(19), 1–4 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Xiaoxia Zhu
    • 1
  • Jiaxin Song
    • 1
  • Jianfang Meng
    • 1
  • Jia Liu
    • 1
    Email author
  1. 1.School of Economic and Management SciencesYanshan UniversityQinhuangdaoChina

Personalised recommendations