Advertisement

Characterization of the Hydrothermal Corrosion Behavior of Ceramics for Accident Tolerant Fuel Cladding

  • Peter J. DoyleEmail author
  • Stephen S. Raiman
  • R. Rebak
  • Kurt A. Terrani
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Accident-tolerant fuel (ATF) is an increasingly important research topic for the nuclear industry, and ceramics such as SiC are strong contenders for deployment as ATF cladding. The hydrothermal corrosion characteristics of SiC and Al2O3 were investigated via constantly-refreshing autoclave corrosion and post exposure characterization. Four different types of chemical vapor deposited (CVD) SiC specimens were examined (two with high electrical resistance, one with low electrical resistance, and a single crystal 4H structural variant). Al2O3 specimens were prepared in single crystal and polycrystalline states. PWR primary water, BWR–HWC, and BWR–NWC environments were maintained throughout the experiments. Characterization conducted using SEM and EDS was used to determine factors affecting corrosion rates and susceptibility to grain boundary attack in each water chemistry condition. Raman spectroscopy was also used to determine chemical variation of the surface with corrosion. Grain boundary attack was found to be significant for both alumina and SiC polycrystalline variants.

Keywords

Accident-tolerant fuel ATF SiC Al2O3 Hydrothermal corrosion 

Notes

Acknowledgements

This research was funded by U.S. Department of Energy’s Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D Program.

References

  1. 1.
    Y. Katoh, L.L. Snead, I. Szlufarska, W.J. Weber, Radiation effects in SiC for nuclear structural applications. Curr. Opin. Solid State Mater. Sci. 16, 143–152 (2012). doi: https://doi.org/10.1016/j.cossms.2012.03.005 CrossRefGoogle Scholar
  2. 2.
    S.K. Ghosal, G.C. Palit, P.K. De, Corrosion of zirconium alloys in nuclear applications—A review. Miner. Process. Extr. Metall. Rev. 22, 519–546 (2002). doi: https://doi.org/10.1080/08827500208547428 CrossRefGoogle Scholar
  3. 3.
    T.R. Allen, R.J.M. Konings, A.T. Motta, Corrosion of Zirconium Alloys (Elsevier Inc., 2012). doi: https://doi.org/10.1016/B978-0-08-056033-5.00063-X CrossRefGoogle Scholar
  4. 4.
    C.P. Deck, G.M. Jacobsen, J. Sheeder, O. Gutierrez, J. Zhang, J. Stone, H.E. Khalifa, C.A. Back, Characterization of SiC-SiC composites for accident tolerant fuel cladding. J. Nucl. Mater. 466, 1–15 (2015). doi: https://doi.org/10.1016/j.jnucmat.2015.08.020 CrossRefGoogle Scholar
  5. 5.
    T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, B.A. Pint, Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure. J. Nucl. Mater. 427, 396–400 (2012). doi: https://doi.org/10.1016/j.jnucmat.2012.05.007 CrossRefGoogle Scholar
  6. 6.
    S. Kondo, S. Mouri, Y. Hyodo, T. Hinoki, F. Kano, Role of irradiation-induced defects on SiC dissolution in hot water. Corros. Sci. 112, 402–407 (2016). doi: https://doi.org/10.1016/j.corsci.2016.08.007 CrossRefGoogle Scholar
  7. 7.
    K.A. Terrani, Y. Yang, Y.-J. Kim, R. Rebak, H.M. Meyer, T.J. Gerczak, Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation. J. Nucl. Mater. 465, 488–498 (2015). doi: https://doi.org/10.1016/j.jnucmat.2015.06.019 CrossRefGoogle Scholar
  8. 8.
    S. Kondo, M. Lee, T. Hinoki, Y. Hyodo, F. Kano, Effect of irradiation damage on hydrothermal corrosion of SiC. J. Nucl. Mater. 464, 36–42 (2015). doi: https://doi.org/10.1016/j.jnucmat.2015.04.034 CrossRefGoogle Scholar
  9. 9.
    E. Barringer, Z. Faiztompkins, H. Feinroth, T. Allen, M. Lance, H. Meyer, L. Walker, E. Lara-Curzio, Corrosion of CVD silicon carbide in 500 degrees C supercritical water. J. Am. Ceram. Soc. 90, 315–318 (2007). doi: https://doi.org/10.1111/j.1551-2916.2006.01401.x CrossRefGoogle Scholar
  10. 10.
    H. Hirayama, T. Kawakubo, A. Goto, T. Kaneko, Corrosion Behavior of Silicon Carbide in 290 ℃ Water. J. Am. Ceram. Soc. 72, 2049–2053 (1989). doi: https://doi.org/10.1111/j.1151-2916.1989.tb06029.x CrossRefGoogle Scholar
  11. 11.
    University of Arizona Mineral Museum, Corundum R040096, (n.d.). http://www.rruff.info/Corundum/R040096. Accessed 1 Jan 2017
  12. 12.
    R.Sh. 62047-42, Diaspore X050055, (n.d.). http://www.rruff.info/Diaspore/X050055. Accessed 1 Jan 2017
  13. 13.
    H.D. Ruan, R.L. Frost, J.T. Kloprogge, Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite. J. Raman Spectrosc. 32, 745–750 (2001). doi: https://doi.org/10.1002/jrs.736 CrossRefGoogle Scholar
  14. 14.
    A.H. Carim, G.S. Rohrer, N.R. Dando, S.-Y. Tzeng, C.L. Rohrer, A.J. Perrotta, Conversion of diaspore to corundum: a new α-Alumina transformation sequence. J. Am. Ceram. Soc. 80, 2677–2680 (1997). doi: https://doi.org/10.1111/j.1151-2916.1997.tb03171.x CrossRefGoogle Scholar
  15. 15.
    F.J. Peryea, J.A. Kittrick, Relative solubility of corundum, gibbsite, boehmite, and diaspore at standard state conditions. Clays Clay Miner. 36, 391–396, (1988) http://www.clays.org/journal/archive/volume36/36-5-391.pdf. Accessed 6 Mar 2017CrossRefGoogle Scholar
  16. 16.
    T. Sato, S. Sato, A. Okuwaki, S.-I. Tanaka, corrosion behavior of alumina ceramics in caustic alkaline solutions at high temperatures. J. Am. Ceram. Soc. 74, 3081–3084 (1991) http://www.onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1991.tb04304.x/abstract CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Peter J. Doyle
    • 1
    Email author
  • Stephen S. Raiman
    • 1
  • R. Rebak
    • 2
  • Kurt A. Terrani
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.GE Global Research CenterSchenectadyUSA

Personalised recommendations