Advertisement

Mechanical Behavior and Structure of Advanced Fe-Cr-Al Alloy Weldments

  • M. N. Gussev
  • K. G. Field
  • E. Cakmak
  • Y. Yamamoto
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

FeCrAl alloys are promising for developing accident tolerant nuclear fuel claddings. These alloys showed good environmental compatibility and oxidation resistance in elevated-temperature water and steam, as well as low radiation-induced swelling. However, FeCrAl alloys may suffer from several degradation mechanisms, one of which may be a susceptibility to cracking during welding. Here, a set of advanced modified FeCrAl alloys were designed and produced by varying Al-content and employing additions of Nb and TiC. Strength, ductility, and deformation hardening behavior of the advanced FeCrAl alloys and their weldments are discussed.

Keywords

FeCrAl alloys Laser-beam welding EBSD Digital image correlation 

Notes

Acknowledgements

This research was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, for the Nuclear Energy Enabling Technologies (NEET) program for the Reactor Materials effort. This report was authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. Authors would like to thank Dr. L. Tan (ORNL) for fruitful discussion of the results and S. Crawford (ORNL) for valuable help in manuscript preparation.

References

  1. 1.
    M.O.H. Amuda, S. Mridha, Comparative evaluation of grain refinement in AISI 430 FSS welds by elemental metal powder addition and cryogenic cooling. Mater. Des. 35, 609–618 (2012)CrossRefGoogle Scholar
  2. 2.
    I. AghaAli, M. Farzam, M.A. Golozar, I. Danaee, The effect of repeated repair welding on mechanical and corrosion properties of stainless steel 316L, in Materials & Design (1980–2015), vol. 54 (2014), pp. 331–341CrossRefGoogle Scholar
  3. 3.
    S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective. J. Nucl. Mater. 448, 374–379 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Lim, I.S. Hwang, J.H. Kim, Design of alumina forming FeCrAl steels for lead or lead–bismuth cooled fast reactors. J. Nucl. Mater. 441, 650–660 (2013)CrossRefGoogle Scholar
  5. 5.
    B.A. Pint, K.A. Terrani, Y. Yamamoto, L.L. Snead, Material selection for accident tolerant fuel cladding. Metall Mater Trans E 2, 190–196 (2015)Google Scholar
  6. 6.
    J. Lim, H.O. Nam, I.S. Hwang, J.H. Kim, A study of early corrosion behaviors of FeCrAl alloys in liquid lead–bismuth eutectic environments. J. Nucl. Mater. 407, 205–210 (2010)CrossRefGoogle Scholar
  7. 7.
    J. Engkvist, U. Bexell, M. Grehk, M. Olsson, High temperature oxidation of FeCrAl-alloys–influence of Al-concentration on oxide layer characteristics. Mater. Corros. 60, 876–881 (2009)CrossRefGoogle Scholar
  8. 8.
    B.A. Pint, K.A. Unocic, K.A. Terrani, Effect of steam on high temperature oxidation behaviour of alumina-forming alloys. Mater. High Temp. 32, 28–35 (2015)CrossRefGoogle Scholar
  9. 9.
    R. Kögler, W. Anwand, A. Richter, M. Butterling, X. Ou, A. Wagner, C.-L. Chen, Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy. J. Nucl. Mater. 427, 133–139 (2012)CrossRefGoogle Scholar
  10. 10.
    E. Little, D. Stow, Void-swelling in irons and ferritic steels: II. An experimental survey of materials irradiated in a fast reactor. J. Nucl. Mater. 87, 25–39 (1979)CrossRefGoogle Scholar
  11. 11.
    K.G. Field, M.N. Gussev, Y. Yamamoto, L.L. Snead, Deformation behavior of laser welds in high temperature oxidation resistant Fe–Cr–Al alloys for fuel cladding applications. J. Nucl. Mater. 454, 352–358 (2014)CrossRefGoogle Scholar
  12. 12.
    W. Chubb, S. Alfant, A.A. Bauer, E. Jablonowski, F. Shober, R.F. Dickerson, Constitution, Metallurgy, and Oxidation Resistance of Iron-Chromium-Aluminum Alloys (Battelle Memorial Inst, Columbus, OH, 1958)CrossRefGoogle Scholar
  13. 13.
    J. Regina, J. Dupont, A. Marder, The effect of chromium on the weldability and microstructure of Fe-Cr-Al weld cladding. Weld J New York 86, 170 (2007)Google Scholar
  14. 14.
    J. DuPont, J. Regina, K. Adams, Improving the weldability of fecral weld overlay coatings, in Annual Conference on Fossil Energy Materials. Citeseer, p. 132 (2007)Google Scholar
  15. 15.
    R. Trivedi, S. David, M. Eshelman, J. Vitek, S. Babu, T. Hong, T. DebRoy, In situ observations of weld pool solidification using transparent metal-analog systems. J. Appl. Phys. 93, 4885–4895 (2003)CrossRefGoogle Scholar
  16. 16.
    T. Zacharia, J. Vitek, J. Goldak, T. DebRoy, M. Rappaz, H. Bhadeshia, Modeling of fundamental phenomena in welds. Modell. Simul. Mater. Sci. Eng. 3, 265 (1995)CrossRefGoogle Scholar
  17. 17.
    M. Turski, M. Smith, P. Bouchard, L. Edwards, P. Withers, Spatially resolved materials property data from a uniaxial cross-weld tensile test. J. Press. Vessel Technol. 131, 061406 (2009)CrossRefGoogle Scholar
  18. 18.
    P.D. Edmondson, S.A. Briggs, Y. Yamamoto, R.H. Howard, K. Sridharan, K.A. Terrani, K.G. Field, Irradiation-enhanced α′ precipitation in model FeCrAl alloys. Scripta Mater. 116, 112–116 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Ejenstam, M. Thuvander, P. Olsson, F. Rave, P. Szakalos, Microstructural stability of Fe–Cr–Al alloys at 450–550 °C. J. Nucl. Mater. 457, 291–297 (2015)CrossRefGoogle Scholar
  20. 20.
    K.G. Field, X. Hu, K.C. Littrell, Y. Yamamoto, L.L. Snead, Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys. J. Nucl. Mater. 465, 746–755 (2015)CrossRefGoogle Scholar
  21. 21.
    K.G. Field, M.N. Gussev, R. Howard, First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys, ORNL/TM-2015/770 (2015)Google Scholar
  22. 22.
    D. Naumenko, J. Le-Coze, E. Wessel, W. Fischer, W.J. Quadakkers, Ultra-high purity metals. II. Effect of trace amounts of carbon and nitrogen on the high temperature oxidation resistance of high purity FeCrAl alloys. Mater. Trans. 43, 168–172 (2002)CrossRefGoogle Scholar
  23. 23.
    B. Pint, Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid. Met. 45, 1–37 (1996)CrossRefGoogle Scholar
  24. 24.
    M.A. Sutton, J.J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer Science & Business Media (2009)Google Scholar
  25. 25.
    Y.B. Das, A.N. Forsey, T.H. Simm, K.M. Perkins, M.E. Fitzpatrick, S. Gungor, R.J. Moat, In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel. Mater. Des. 112, 107–116 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Huynh, J. Rotella, M.D. Sangid, Fatigue behavior of IN718 microtrusses produced via additive manufacturing. Mater. Des. 105, 278–289 (2016)CrossRefGoogle Scholar
  27. 27.
    C. Leitão, I. Galvão, R. Leal, D. Rodrigues, Determination of local constitutive properties of aluminium friction stir welds using digital image correlation. Mater. Des. 33, 69–74 (2012)CrossRefGoogle Scholar
  28. 28.
    M.O. Acar, S. Gungor, Experimental and numerical study of strength mismatch in cross-weld tensile testing. J. Strain Anal. Eng. Des., p. 0309324715593699 (2015)Google Scholar
  29. 29.
    S. Patra, A. Ghosh, J. Sood, L.K. Singhal, A.S. Podder, D. Chakrabarti, Effect of coarse grain band on the ridging severity of 409L ferritic stainless steel. Mater. Des. 106, 336–348 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Dziaszyk, E.J. Payton, F. Friedel, V. Marx, G. Eggeler, On the characterization of recrystallized fraction using electron backscatter diffraction: a direct comparison to local hardness in an IF steel using nanoindentation. Mater. Sci. Eng. A 527, 7854–7864 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Gussev, T. Byun, J. Busby, Description of strain hardening behavior in neutron-irradiated fcc metals. J. Nucl. Mater. 427, 62–68 (2012)CrossRefGoogle Scholar
  32. 32.
    A. Patra, D.L. McDowell, Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material. Acta Mater. 110, 364–376 (2016)CrossRefGoogle Scholar
  33. 33.
    V. Villaret, F. Deschaux-Beaume, C. Bordreuil, G. Fras, C. Chovet, B. Petit, L. Faivre, Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires. Mater. Des. 51, 474–483 (2013)CrossRefGoogle Scholar
  34. 34.
    H. Li, W. Xing, X. Yu, W. Zuo, L. Ma, P. Dong, W. Wang, G. Fan, J. Lian, M. Ding, Dramatically enhanced impact toughness in welded ultra-ferritic stainless steel by additional nitrogen gas in Ar-based shielding gas. J. Mater. Res. 31, 3610–3618 (2016)CrossRefGoogle Scholar
  35. 35.
    Y. Zheng, Y. Wang, H. Li, W. Xing, X. Yu, P. Dong, W. Wang, G. Fan, J. Lian, M. Ding, An experimental study of nitrogen gas influence on the 443 ferritic stainless steel joints by double-shielded welding. Int. J. Adv. Manuf. Technol., 1–9 (2016)Google Scholar
  36. 36.
    S. Kobayashi, T. Takasugi, Mapping of 475 °C embrittlement in ferritic Fe–Cr–Al alloys. Scripta Mater. 63, 1104–1107 (2010)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • M. N. Gussev
    • 1
  • K. G. Field
    • 1
  • E. Cakmak
    • 1
  • Y. Yamamoto
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations