Advertisement

Investigation of Pitting Corrosion in Sensitized Modified High-Nitrogen 316LN Steel After Neutron Irradiation

  • D. A. MerezhkoEmail author
  • M. S. Merezhko
  • M. N. Gussev
  • J. T. Busby
  • O. P. Maksimkin
  • M. P. Short
  • F. A. Garner
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The influence has been studied of thermo-mechanical treatment, sensitization conditions, and neutron irradiation on the pitting corrosion resistance of austenitic 316LN stainless steel variants in 10% FeCl3·6H2O at 22 °C. Variants of this steel were modified with additions of nitrogen, manganese, copper, and tungsten, as well as testing cast, cold-rolled, grain boundary engineered (GBE), and as-received variants. It was found that the 316LN steel variant with additions of 0.2% N and 2% Mn had the best pitting corrosion resistance of all studied conditions. When irradiated in a light water reactor (LWR) to a maximum fluence of 3 × 1017 n/cm2 (E > 1.1 meV, Tirr < 50 °C), neutron irradiation surprisingly increased the resistance of GBE steels to pitting corrosion. An anisotropy of corrosion resistance of GBE and cold rolled steels was observed.

Keywords

Austenitic stainless steel Alloying Nitrogen Tungsten Copper Sensitization Pitting corrosion Grain boundary engineering 

Notes

Acknowledgements

The authors would like to thank Asset Shaimerdenov for his kindly assistance in calculating of the neutron irradiation parameters.

References

  1. 1.
    P. Atanda, A. Fatudimu, O. Oluwole, J. Min. Mat. Charact. Eng. 9(1), 13–23 (2010)Google Scholar
  2. 2.
    P. Zahumensky et al., Corros. Sci. 41(1), 1305–1322 (1999)CrossRefGoogle Scholar
  3. 3.
    J. Kysela, V. Broz, J. Srank, ENS RRFM’99. Transactions http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/32/034/32034888.pdf
  4. 4.
    A. Barbucci, G. Cerisola, P.L. Cabot, J. Electrochem. Soc. 149(12), B534–B542 (2002)CrossRefGoogle Scholar
  5. 5.
    H. Krawiec et al., Metall. Mat. Trans. A 35(11), 3515–3521 (2004)CrossRefGoogle Scholar
  6. 6.
    G.S. Frankel, in Corrosion Science: A Retrospective and Current Status, in ed. by Honor of Robert P. Frankenthal, G.S. Frankel, H.S. Isaacs, J.R. Scully, J.D. Sinclair, PV 2002–13, The Electrochemical Society Proceedings Series, Pennington, NJ (2002)Google Scholar
  7. 7.
    A.K. Singh, V. Chaudhary, A. Sharma, Portugaliae Electrochimica Acta 30(2), 99–109 (2012)CrossRefGoogle Scholar
  8. 8.
    P.M. Natishan, W.E. O’Grady, J. Electrochem. Soc. 161(9), C421–C432 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Rossi, B. Elsener, G. Hahner, M. Textor, N.D. Spencer, Surf. Interface Anal. 29, 460–467 (2000)CrossRefGoogle Scholar
  10. 10.
    K. Sasaki, G.T. Burstein, The generation of surface roughness during slurry erosion-corrosion and its effect on the pitting potential. Corros. Sci. 38(12), 2111–2120 (1996)CrossRefGoogle Scholar
  11. 11.
    Hong Shih, ed., Corrosion Resistance (Croatia: InTech, 2012, ISBN 978-953-51-0467-4)Google Scholar
  12. 12.
    U.K. Mudali et al., Corros. Sci. 44(10), 2183–2189 (2002)CrossRefGoogle Scholar
  13. 13.
    M.O. Speidel, Mat-wiss. u. Werkstoiftech. 37(10), 875–880 (2006)CrossRefGoogle Scholar
  14. 14.
    X.P. Ma, L.J. Wang, B. Qin, C.M. Liu, S.V. Subramanian, Mater. Des. 34, 74–81 (2012)CrossRefGoogle Scholar
  15. 15.
    Q. Ran, Y. Xu, J. Li, J. Wan, X. Xiao, H. Yu, L. Jiang, Mater. Des. 56, 959–965 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Tsuchiyama, H. Takebe, K. Tsuboi, S. Takaki, Scripta Mater. 62, 731–734 (2010)CrossRefGoogle Scholar
  17. 17.
    I. LeMay, L.M. Schetky, Copper in Iron and Steel (Wiley, New York, NY, 1982)Google Scholar
  18. 18.
    B.M. Gonza ´lez, et al. Mater. Sci. Eng. A, 343, 51–56 (2003)Google Scholar
  19. 19.
    H. Geng et al., J. Mater. Sci. 43(1), 83–87 (2008)CrossRefGoogle Scholar
  20. 20.
    T. Sourisseau, E. Chauveau, B. Baroux, Corros. Sci. 47(5), 1097–1117 (2005)CrossRefGoogle Scholar
  21. 21.
    H.T. Lin, W.T. Tsai, J.T. Lee, C.S. Huang, Corros. Sci. 33, 691–697 (1992)CrossRefGoogle Scholar
  22. 22.
    H. Ohashi, T. Adachi, K. Maekita, Tetsu Hagane 66, 1309 (1980)Google Scholar
  23. 23.
    A. Pardo, M.C. Merino, M. Carboneras, A.E. Coy, R. Arrabal, Corros. Sci. 49, 510–525 (2007)CrossRefGoogle Scholar
  24. 24.
    A.A. Hermas, I.M. Hassab-Allah, J. Mat. Sci. 36(14), 3415–3422 (2001)CrossRefGoogle Scholar
  25. 25.
    B. Wallen, M. Liljas, P. Stenvall, Mater. Des. 13, 329–333 (1992)CrossRefGoogle Scholar
  26. 26.
    G. Rondelli, B. Vicentini, A. Cigada, Mat. Corros. 46(11), 628–632 (1995)CrossRefGoogle Scholar
  27. 27.
    J.T. Busby, et al. Improved Cast Stainless Steels for ITER Shield Modules; 2008 Annual Report, ORNL/TM-2008/175, Sept 2008Google Scholar
  28. 28.
    K.T. Slattery, D.E. Driemeyer, Cassette Body Cast/HIP Development, ITER Technical Note, ITER/US/98/IV-DV-09 (1998)Google Scholar
  29. 29.
    E.A. Kenik et al., J. Nucl. Mater. 483, 35–43 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Tan, T.R. Allen, J.T. Busby, J. Nucl. Mater. 441, 661–666 (2013)CrossRefGoogle Scholar
  31. 31.
    T. Watanabe, J. Mat. Sci. 46, 4095–4115 (2011)CrossRefGoogle Scholar
  32. 32.
    V. Randle, Mater. Sci. Technol. 26(3), 253–261 (2010)CrossRefGoogle Scholar
  33. 33.
    E.A. Trillo, L.E. Murr, J. J. Mat. Sci. 33(5), 1263–1271 (1998)CrossRefGoogle Scholar
  34. 34.
    R. Jones, V. Randle, Mat. Sci. Eng. A527, 4275–4280 (2010)CrossRefGoogle Scholar
  35. 35.
    J.T. Busby et al., J. Nucl. Mater. 417, 866–869 (2011)CrossRefGoogle Scholar
  36. 36.
    A.H. Bott, F.B. Pickering, G.J. Butterworth, J. Nucl. Mater. 141–143, 1088–1096 (1986)CrossRefGoogle Scholar
  37. 37.
    M. Nystrom, U. Lindstedt, B. Karlsson, J.-O. Nilsson, Mater. Sci. Technol. 13, 560–567 (1997)CrossRefGoogle Scholar
  38. 38.
    J.Y. Jonsson, L. Wegrelius, S. Heino, M. Liljas, R. Ostberg, Mater. Sci. Forum 318–320, 511–516 (1999)CrossRefGoogle Scholar
  39. 39.
    K.M. Kim, K.Y. Kim, J. Power Sources 173, 917–924 (2007)CrossRefGoogle Scholar
  40. 40.
    ASTM G 48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution (2003)Google Scholar
  41. 41.
    T.S. Byun, K. Farrell, Plastic instability in polycrystalline metals after low temperature irradiation. Acta Mater. 52(6), 1597–1608 (2004)CrossRefGoogle Scholar
  42. 42.
    S.-X. Li et al., Corros. Sci. 66, 211–216 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Beckert, H. Klemm. Handbuch der metallographischen Ätzverfahren (Aufl. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig-Ln, 1976), 410Google Scholar
  44. 44.
    Kaji Y. et al., Development of damage evaluation method considering radiation induced stress relaxation—№. IAEA-CN—155 (2007)Google Scholar
  45. 45.
    H. Pommier, E. Busso, T. Morgeneyer, A. Pineau, Acta Mater. 103, 893–908 (2016)CrossRefGoogle Scholar
  46. 46.
    L.J. Wang, L.Y. Sheng, C.M. Hong, Mater. Des. 37, 349–355 (2012)CrossRefGoogle Scholar
  47. 47.
    G.S. Was, Fundamentals of Radiation Materials Science (Springer Berlin Heidelberg, New York, 2007)Google Scholar
  48. 48.
    Segura A. et al., NDT. net., vol. 5 (2009)Google Scholar
  49. 49.
    Handbook of stainless steel, Outokumpu Oyj, Finland, 92 p. (2013)Google Scholar
  50. 50.
    G.O.H. Whillock, B.F. Dunnett, M. Takeuchi, Corrosion 61(1), 58–67 (2005)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • D. A. Merezhko
    • 1
    Email author
  • M. S. Merezhko
    • 1
  • M. N. Gussev
    • 2
  • J. T. Busby
    • 2
  • O. P. Maksimkin
    • 1
  • M. P. Short
    • 3
  • F. A. Garner
    • 4
    • 5
  1. 1.Institute of Nuclear PhysicsAlmatyKazakhstan
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA
  3. 3.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Moscow Engineering Physics InstituteMoscowRussia
  5. 5.Radiation Effects ConsultingPinehurstUSA

Personalised recommendations