Advertisement

Study on Hold-Time Effects in Environmental Fatigue Lifetime of Low-Alloy Steel and Austenitic Stainless Steel in Air and Under Simulated PWR Primary Water Conditions

  • M. HerbstEmail author
  • A. Roth
  • J. Rudolph
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

This paper summarizes the results of a research project on environmental effects on the fatigue lifetime of selected low-alloy steels and austenitic stainless steels. Results from investigations on the effect of hold times during fatigue in air, as well as under simulated PWR primary water conditions are presented. Strain controlled fatigue tests with low strain rates and low strain amplitudes have been performed in air using a low-alloy RPV steel as well as the stabilized austenitic stainless steel 347 and the non-stabilized austenitic stainless steel 304L. Similar strain controlled tests under simulated PWR primary coolant conditions were performed using the two above mentioned austenitic stainless steels. The fatigue cycling was performed at 240 °C whereas holds were applied at higher temperature (290 °C). The effect of hold periods is compared to reference tests without hold times and to the prediction based on NUREG/CR 6909, Rev. 1.

Keywords

Environmentally Assisted Fatigue (EAF) Hold time effects 

Notes

Acknowledgements

Open image in new window

The presented project was funded by the German Federal Ministry of Economic Affairs and Energy (BMWi, project no. 1501459 B) on basis of a decision by the German Bundestag.

References

  1. 1.
    O.K. Chopra, W.J. Shack, Effect of LWR coolant on the fatigue life of reactor materials. U.S. NRC, NUREG/CR-6909, ANL-06/08 (2006)Google Scholar
  2. 2.
    A. Roth, B. Devrient, Environmental effects on fatigue—possible reasons for the apparent mismatch between laboratory test results and operational experience. FONTEVRAUD 7—Contribution of Materials Investigations to Improve the Safety and Performance of LWRs (2010)Google Scholar
  3. 3.
    J. Solin, J. Alhainen, E. Karabaki et al., Effects of hot water and holds on fatigue of stainless steel, in ASME 2016 Pressure Vessels and Piping Conference, V01AT01A021 (2016)Google Scholar
  4. 4.
    J. Solin, S. Reese, H.E. Karabaki et al., Environmental fatigue factors (NUREG/CR-6909) and strain controlled data for stabilized austenitic stainless steel, in ASME 2013 Pressure Vessels and Piping Conference, V01AT01A021 (2013)Google Scholar
  5. 5.
    J. Solin, S. Reese, H.E. Karabaki et al., Fatigue of stainless steel in simulated operational conditions: effects of PWR water, temperature and holds, in ASME 2014 Pressure Vessels and Piping Conference, V001T01A027 (2014)Google Scholar
  6. 6.
    J. Solin, S. Reese, H.E. Karabaki et al., Research on hold time effects in fatigue of stainless steel: simulation of normal operation between fatigue transients, in ASME 2015 Pressure Vessels and Piping Conference, V01AT01A030Google Scholar
  7. 7.
    J. Solin, E. Karabaki, W. Mayinger, Effects of hot water and holds on fatigue of stainless steel, in Proceedings of the ASME 2016 Pressure Vessels and Piping Conference, PVP 2016, July 17–21, Vancouver, British columbia, Canada, PVP2016-63291 (2016)Google Scholar
  8. 8.
    J.A. Le Duff, A. Lefrancois, J. Vernot, Effects of surface finish and loading conditions on the low cycle fatigue behaviour of austenitic stainless steel in PWR environment for various strain amplitude levels, Proceedings of ASME 2009 PVP(PVP2009-78129)Google Scholar
  9. 9.
    J.A. Le Duff, A. Lefrançois, J.P. Vernot, Effects of surface finish and loading conditions on the low cycle fatigue behavior of austenitic stainless steel in PWR environment: comparison of LCF test results with NUREG/CR-6909 life estimations, in ASME 2008 Pressure Vessels and Piping Conference, pp. 451–460Google Scholar
  10. 10.
    J.A. Le Duff, A. Lefrançois, J.P. Vernot et al., Effect of loading signal shape and of surface finish on the low cycle fatigue behavior of 304L stainless steel in PWR environment, in ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, pp. 233–241Google Scholar
  11. 11.
    J.A. Le Duff, A. Lefrançois, J.P. Vernot, D. Bossu, Effect of loading signal shape and of surface finish on the low cycle fatigue behavior of 304L stainless steel in PWR environment. PVP2010-26027, in Proceedings of the ASME 2010 Pressure Vessels & Piping Conference PVP2010, Bellevue, Washington, USA, 18–22 July 2010Google Scholar
  12. 12.
    M. Kammerer, K.-H. Herter, X. Schuler, Untersuchungen zu Belastungsparametern und Mediumseinfluss auf die Ermüdungsfestigkeit austenitischer und ferritischer Stähle einschließlich Schweißverbindungen, Abschlussbericht BMWi Vorhaben 1501459A (2017)Google Scholar
  13. 13.
    A. Roth, M. Herbst, J. Rudolph et al., Environmental influences on the fatigue assessment of austenitic and ferritic steel components including welds, in Proceedings of the ASME 2014 Pressure Vessels & Piping Conference PVP2014 (2014)Google Scholar
  14. 14.
    J. Rudolph, P. Wilhelm, M. Kammerer, K.-H. Herter, X. Schuler, Verbundvorhaben: „Untersuchungen zum Einfluss bauteilrelevanter Beanspruchungen auf die Ermüdungsfestigkeit austenitischer und ferritischer Stähle einschließlich Schweißverbingungen“ AP8 „Entwicklung von Ansätzen für ein ingeniertechnisch handhabbares Berechnungskonzept“ (2017)Google Scholar
  15. 15.
    H.-P. Seifert, S. Ritter, Environmentally-assisted cracking in austenitic light water reactor structural materials—final report of the KORA-I project. Report: Paul Scherrer Institute, 2009, Paul Scherrer Institute: Nuclear Energy and Safety Research Department, Villigen (Switzerland). PSI Report No. 09––03 (2009)Google Scholar
  16. 16.
    H.-P. Seifert, S. Ritter, H.J. Leber, Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions. Corros. Sci. 55, 61–75 (2012)CrossRefGoogle Scholar
  17. 17.
    H.-P. Seifert, S. Ritter, H. Leber, Effect of static load hold periods on the corrosion fatigue behaviour of austenitic stainless steels in simulated BWR environments, in Conference: 15th International Conference on Environmental Degradation of Materials in Nuclear Systems—Water Reactors, Colorado Springs (Colorado, USA). No. 0547, pp. 547–560, 7–11 Aug 2011CrossRefGoogle Scholar
  18. 18.
    E. Karabaki, M. Twite, J. Solin et al., Fatigue performance of stainless steels (304L, 347) in experiments simulating NPP operation with hold times, in ASME 2016 Pressure Vessels and Piping Conference, V01AT01A014 (2016)Google Scholar
  19. 19.
    E. Karabaki, J. Solin, M. Twite, M. Herbst, J. Mann, M. Grace Burke, Fatigue with hold times simulating NPP normal operation results for stainless steel grades 304L and 347, in Proceedings of the ASME 2017 Pressure Vessels & Piping Division Conference, PVP2017, PVP2017-66097Google Scholar
  20. 20.
    K. Kußmaul et al. Rißwachstum von rohrförmigen Komponenten mit Umfangsfehlern bei Innendruckbelastung und überlagertem wechselnden äußeren Biegemoment. Staatliche Materialprüfungsanstalt Universität Stuttgart. Abschlussbericht, MPA-Auftrags-Nr. 8530 00 000, Band 1, 04/1993Google Scholar
  21. 21.
    M. Herbst, A. Roth, Untersuchungen zum Einfluss bauteilrelevanter Beanspruchungen auf die Ermüdungsfestigkeit austenitischer und ferritischer Stähle einschließlich Schweißverbindungen, Teilprojekt B: Untersuchungen zum Einfluss von Haltezeiten und Mediumseinfluss auf die Ermüdungsfestigkeit austenitischer und ferritischer Stähle, Abschlussbericht BMWi Vorhaben 1501459B (2017)Google Scholar
  22. 22.
    J. Rudolph, P. Wilhelm, A. Roth, M. Herbst, M. Kammerer, K.-H. Herter, X. Schuler, Proposal for an improved engineering fatgue lifetime assessment concept, in Proceedings of the ASME 2016 Pressure Vessels and Piping Conference, PVP 2016, Vancouver, British columbia, Canada, PVP2016-63576, July 17–21, 2016Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.AREVA GmbH, Technical CenterErlangenGermany

Personalised recommendations