Advertisement

SCC Initiation in the Machined Austenitic Stainless Steel 316L in Simulated PWR Primary Water

  • Litao Chang
  • Jonathan Duff
  • M. Grace Burke
  • Fabio Scenini
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Annealed and cold-worked stainless steel 316L samples with machined and polished surfaces were tested in simulated pressurized water reactor (PWR) primary water under slow strain rate tensile (SSRT) test conditions to investigate stress corrosion cracking (SCC) initiation. Roughness, residual stress and cross-sectional microstructure of the as-machined samples were characterized before SSRT tests. Plan view and cross-sectional examinations were performed after the test. Pre-test characterization indicated that a deformation layer was present on the machined surfaces. This deformation layer consisted of an ultrafine-grained layer on the top and deformation bands underneath. The thickness of the deformation layer on the annealed material was greater than that on the cold-worked material. Post-test characterization revealed that the SCC initiation behaviors of the as-machined and polished surfaces were different for both annealed and cold-worked materials. Machining increased SCC initiation susceptibility of the annealed material as many shallow cracks initiated along the machining marks in the machined surface, and it decreased the SCC initiation susceptibility of the cold-worked material as a reduced number of cracks were identified in the machined surface compared to the polished surface. The factors influencing SCC initiation are also discussed.

Keywords

Stress corrosion cracking Stainless steel Machining Ultrafine grain Oxide layer 

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the New Nuclear Manufacturing (NNUMAN) program sponsored by EPSRC (grant EP/JO21172/1), Dr. Agostino Maurotto of the Nuclear Advanced Manufacturing Research Centre (University of Sheffield) for providing the machined plates, and Dr. Kudzanai Mukahiwa for beneficial discussions.

References

  1. 1.
    T. Yonezawa, M. Watanabe, H. Atsushi, in 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Canadian Nuclear Society, Ottawa, Ontario, Canada, 2015, pp. 496–513Google Scholar
  2. 2.
    T. Couvant, L. Legras, C. Pokor, F. Vaillant, Y. Brechet, J. Boursier, P. Moulart, in 13th International conference on environmental degradation of materials in nuclear power systems, Whistler, BC (Canada), 2007, pp. 19–23Google Scholar
  3. 3.
    L. Tribouilloy, F. Vaillant, J. Olive, M. Puiggali, L. Legras, T. Couvant, J. Boursier, Y. Rouillon, C. Amzallag, Adv. Mater. Sci. 7, 11 (2007)Google Scholar
  4. 4.
    O. Raquet, E. Herms, F. Vaillant, T. Couvant, J.-M. Boursier, in 12th International Symposium on Environmental Degradation of Materials in Nuclear Power Reactors, ed. by T.R. Allen, P.J. King, L. Nelson (Salt Lake City, USA, 2005), pp. 1049–1058Google Scholar
  5. 5.
    P. Huguenin, J. Crepin, C. Duhamel, H. Proudhon, in 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, NACE International, Asheville, North Carolina, USA, 2012, pp. 1414–1433Google Scholar
  6. 6.
    R. Staehle, in Workshop on Detection, Avoidance, Mechanisms, Modeling and Prediction of SCC Initiation in Water-Cooled Nuclear Reactor Plants, Beaune, France, 2008Google Scholar
  7. 7.
    T. Couvant, P. Moulart, L. Legras, P. Bordes, J. Capelle, Y. Rouillon, T. Balon, in 12th International Symposium on Environmental Degradation of Materials in Nuclear Power Reactors, ed. by T.R. Allen, P.J. King, L. Nelson (TMS, Salt Lake City, USA, 2005), pp. 1069–1079Google Scholar
  8. 8.
    S.W. Sharkawy, Z. Xia, Z. Szklarska-Smialowska, J. Nucl. Mater. 195, 184–190 (1992)CrossRefGoogle Scholar
  9. 9.
    Z. Lu, T. Shoji, F. Meng, Y. Qiu, T. Dan, H. Xue, Corros. Sci. 53, 247–262 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Chen, Z. Lu, Q. Xiao, X. Ru, G. Han, Z. Chen, B. Zhou, T. Shoji, J. Nucl. Mater. 472, 1–12 (2016)CrossRefGoogle Scholar
  11. 11.
    D. Du, K. Chen, L. Yu, H. lu, L. Zhang, X. Shi, X. Xu, J. Nucl. Mater. 456 (2015), 228–234Google Scholar
  12. 12.
    L. Zhang, J. Wang, Corros. Sci. 87, 278–287 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Yaguchi, T. Yonezawa, Corros. Sci. 86, 326–336 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Couvant, F. Vaillant, J. Boursier, D. Delafosse, Euro. Fed. Corros. Publ. 51, 87 (2007)Google Scholar
  15. 15.
    G. Han, Z. Lu, X. Ru, J. Chen, Q. Xiao, Y. Tian, J. Nucl. Mater 467, Part 1, 194–204 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Han, J. Mei, Q. Peng, E.-H. Han, W. Ke, Corros. Sci. 98, 72–80 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Han, J. Mei, Q. Peng, E.-H. Han, W. Ke, Corros. Sci. (2016)Google Scholar
  18. 18.
    F. Scenini, A. Sherry, Corrosion 68, 1094–1107 (2012)CrossRefGoogle Scholar
  19. 19.
    M.J. Olszta, L.E. Thomas, K. Asano, S. Ooki, S.M. Bruemmer, in 14th International Conf. on Environmental Degradation of Materials in Nuclear Power Systems, American Nuclear Society, Virginia Beach, VA, 2009, pp. 549–561Google Scholar
  20. 20.
    Y. Miura, Y. Miyahara, K. Kako, M. Sato, in Corrosion, NACE International, 2013Google Scholar
  21. 21.
    Y. Miura, Y. Miyahara, M. Sato, K. Kako, J.I. Tani, in 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, ed. by J.T. Busby, G. Ilevbare, P.L. Andersen, (Wiley Online Library, 2011), pp. 439–449Google Scholar
  22. 22.
    U. Ehrnsten, P. Aaltonen, P. Nenonen, H. Hänninen, C. Jansson, T. Angeliu, in 10th Symposium on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors. Nevada, USA, 2001, pp. 5-9Google Scholar
  23. 23.
    R. Horn, G. Gordon, F. Ford, R. Cowan, Nucl. Eng. Des. 174, 313–325 (1997)CrossRefGoogle Scholar
  24. 24.
    T. Shoji, in 11th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, NACE Stevenson Washington, USA, 2003, pp. 588-598.Google Scholar
  25. 25.
    A. Turnbull, K. Mingard, J. Lord, B. Roebuck, D. Tice, K. Mottershead, N. Fairweather, A. Bradbury, Corros. Sci. 53, 3398–3415 (2011)CrossRefGoogle Scholar
  26. 26.
    G. Hinds, L. Wickström, K. Mingard, A. Turnbull, Corros. Sci. 71, 43–52 (2013)CrossRefGoogle Scholar
  27. 27.
    K. Jacobus, R. DeVor, S. Kapoor, J. Manuf. Sci. Eng. 122, 20–31 (2000)CrossRefGoogle Scholar
  28. 28.
    D.Y. Jang, T.R. Watkins, K.J. Kozaczek, C.R. Hubbard, O.B. Cavin, Wear 194, 168–173 (1996)CrossRefGoogle Scholar
  29. 29.
    R. M. Saoubi, J.C. Outeiro, B. Changeux, J.L. Lebrun, A. Morão Dias, J. Mater. Process. Technol. 96 225–233 (1999)Google Scholar
  30. 30.
    W. Zhang, K. Fang, Y. Hu, S. Wang, X. Wang, Corros. Sci. 108, 173–184 (2016)CrossRefGoogle Scholar
  31. 31.
    K.N. Lyon, T.J. Marrow, S.B. Lyon, J. Mater. Process. Technol. 218, 32–37 (2015)CrossRefGoogle Scholar
  32. 32.
    D.R. Tice, S. Nouraei, K.J. Mottershead, J.W. Stairman, in 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, American Nuclear Society, Virginia Beach, VA, 2009, pp. 158-171Google Scholar
  33. 33.
    Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, K. Lu, Acta Mater. 51, 4319–4329 (2003)CrossRefGoogle Scholar
  34. 34.
    R.K. Gupta, N. Birbilis, Corros. Sci. 92, 1–15 (2015)CrossRefGoogle Scholar
  35. 35.
    F. Scenini, R.C. Newman, R.A. Cottis, R.J. Jacko, Corrosion 64, 824–835 (2008)CrossRefGoogle Scholar
  36. 36.
    C. Ostwald, H.J. Grabke, Corros. Sci. 46, 1113–1127 (2004)CrossRefGoogle Scholar
  37. 37.
    S.E. Ziemniak, M. Hanson, P.C. Sander, Corros. Sci. 50, 2465–2477 (2008)CrossRefGoogle Scholar
  38. 38.
    K. Kruska, S. Lozano-Perez, D.W. Saxey, T. Terachi, T. Yamada, G.D.W. Smith, Corros. Sci. 63, 225–233 (2012)CrossRefGoogle Scholar
  39. 39.
    S. Lozano-Perez, T. Yamada, T. Terachi, M. Schröder, C.A. English, G.D.W. Smith, C.R.M. Grovenor, B.L. Eyre, Acta Mater. 57, 5361–5381 (2009)CrossRefGoogle Scholar
  40. 40.
    P. Withers, H. Bhadeshia, Mater. Sci. Technol. 17, 366–375 (2001)CrossRefGoogle Scholar
  41. 41.
    C.C. Hot, H. Seam, in Handbook of Residual Stress and Deformation of Steel, Residual Stress Formation Processes During Welding and Joining, 2002, pp. 391Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Litao Chang
    • 1
  • Jonathan Duff
    • 1
  • M. Grace Burke
    • 1
  • Fabio Scenini
    • 1
  1. 1.Materials Performance Center, The University of ManchesterManchesterUK

Personalised recommendations