Advertisement

Emulating Neutron-Induced Void Swelling in Stainless Steels Using Ion Irradiation

  • C. SunEmail author
  • L. Malerba
  • M. J. Konstantinovic
  • F. A. Garner
  • S. A. Maloy
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Self-ion irradiation is currently being used to explore the relative void swelling resistance of various candidate advanced alloys for a wide variety of nuclear systems, including light water reactor (LWR) reactors. The credibility of using this surrogate irradiation technique to evaluate potential in-reactor behavior requires that certain facets of neutron-induced behavior be reproduced in the ion simulation. Of particular importance is the ability of ion irradiation to produce the anticipated post-transient swelling rates for fcc and bcc iron-base alloys characteristic of reactor irradiation at ~1.0%/dpa and ~0.2%/dpa, respectively. Using a model duplex Fe-9Cr-C alloy irradiated at 450 ℃ with 8 MeV Fe+ ions it is shown in this study that a post-transient rate of ~0.2%/dpa is observed in the ferrite phase after an incubation period of ~60 dpa. It is also shown that the ferrite phase attains this rate first, while the tempered martensite phase exhibits a longer transient delay prior to the onset of high-rate swelling.

Keywords

Self-ion irradiation Austenitic stainless steel Ferritic/martensitic stainless steel Void swelling Light water reactors 

Notes

Acknowledgements

This work is supported by the U.S. Department of Energy, Laboratory Directed Research and Development funding at Idaho National Laboratory, under contract DE-AC07-05ID14517. We also acknowledge the financial support of the U.S. Department of Energy through the LANL/LDRD Program and the G.T. Seaborg Institute at Los Alamos National Laboratory. We express our appreciation to the Michigan Ion Beam Laboratory at the University of Michigan for providing access to the accelerator and to Ovidiu Toader for conducting the ion irradiation.

References

  1. 1.
    F.A. Garner, Chapter 10, Void swelling and irradiation creep in light water reactor (LWR) environments, in Understanding and Mitigating Ageing in Nuclear Power Plants, ed. by P.G. Tipping (Woodhouse Publishing, 2010), pp. 308–356Google Scholar
  2. 2.
    G.S. Was, Fundamentals of radiation materials science: metals and alloys (Springer, New York, 2007)Google Scholar
  3. 3.
    F.A. Garner, Chapter 6: irradiation performance of cladding and structural steels in liquid metal reactors, Vol. 10A of Materials Science and Technology: A Comprehensive Treatment (VCH Publishers, 1994), pp. 419–543Google Scholar
  4. 4.
    F.A. Garner, Radiation damage in austenitic steels, in Comprehensive Nuclear Materials, vol 4, ed. by R.J.M. Konings (Elsevier, 2012), pp. 33–95Google Scholar
  5. 5.
    F.A. Garner, E.P. Simonen, B.M. Oliver, L.R. Greenwood, M.L. Grossbeck, W.G. Wolfer, P.M. Scott, Retention of hydrogen in FCC metals irradiated at temperatures leading to high densities of bubbles or voids. J. Nucl. Mater. 356, 122–135 (2006)CrossRefGoogle Scholar
  6. 6.
    F.A. Garner, M. Griffiths, L.R. Greenwood, E.R. Gilbert, Impact of Ni-59 (n, alpha) and (n, p) reactions on dpa rate, heating rate, gas generation and stress relaxation in fast reactors, LWR and CANDU reactors, in Proceeding 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, American Nuclear Society, 2010, pp. 1344–1354Google Scholar
  7. 7.
    S. Li, M.L. Grossbeck, Z. Zhang, W. Shen, B.A. Chin, The effect of helium on welding irradiated materials. Welding Research Jan. 90, 19s–25s (2011)Google Scholar
  8. 8.
    Critical Issues Report and Roadmap for the Advanced Radiation-Resistant Materials Program, EPRI Final Report 1026482, December 2012Google Scholar
  9. 9.
    T. Chen, E. Aydogan, J.G. Gigax, D. Chen, J. Wang, X. Wang, S. Ukai, F.A. Garner, L. Shao, Microstructural changes and void swelling of a 12Cr ODS ferritic-martensitic alloy after high-dpa self-ion irradiation. J. Nucl. Mater. 467, 42–49 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Chen, J.G. Gigax, L. Price, D. Chen, S. Ukai, E. Aydogan, S.A. Maloy, F.A. Garner, L. Shao, Temperature dependent dispersoid stability in ion-irradiated ferritic martensitic dual-phase oxide-dispersion-strengthened alloy: coherent interfaces versus incoherent interfaces. Acta Materialia. 116, 29–42 (2016)CrossRefGoogle Scholar
  11. 11.
    J.G. Gigax, T. Chen, H. Kim, J. Wang, L.M. Price, E. Aydogan, S.A. Maloy, D.K. Schreiber, M.B. Toloczko, F.A. Garner, L. Shao, Radiation response of alloy T91 at damage levels up to 1000 peak dpa. J. Nucl. Mater. 482, 257–265 (2016)CrossRefGoogle Scholar
  12. 12.
    E. Aydogan, T. Chen, J.G. Gigax, D. Chen, X. Wang, P.S. Dzhumaev, O.V. Emelyanova, M.G. Ganchenkova, B.A. Kalin, M. Leontiva-Smirnova, R.Z. Valiev, N.A. Enikeev, M.M. Abramova, Y. Wu, W.Y. Lo, Y. Yang, M. Short, S.A. Maloy, F.A. Garner, L. Shao, Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions. J. Nucl. Mater. 487, 96–104 (2017)CrossRefGoogle Scholar
  13. 13.
    E. Aydogan, N. Almirall, G.R. Odette, S.A. Maloy, O. Anderoglu, L. Shao, J.G. Gigax, L. Price, D. Chen, T. Chen, F.A. Garner, Y. Wu, P. Wells, J.J. Lewandowski, D.T. Hoelzer, Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations. J. Nucl. Mater. 486, 86–95 (2017)CrossRefGoogle Scholar
  14. 14.
    G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, M. Hackett, Emulation of reactor irradiation damage using ion beams. Scripta Mater. 88, 33–36 (2014)CrossRefGoogle Scholar
  15. 15.
    F.A. Garner, L. Shao, M.B. Toloczko, S.A. Maloy, V.N. Voyevodin, Use of self-ion bombardment to study void swelling in advanced radiation-resistant alloys, in Proceeding 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, 9–12 August, 2015, Ottawa, Ontario, CanadaGoogle Scholar
  16. 16.
    F.A. Garner, D.S. Gelles, Neutron-induced swelling of commercial alloys at very high exposures. in Proceedings of Symposium on Effects of Radiation on Materials: 14th International Symposium, ASTM STP 1046, Vol. II, ed. by N.H. Packan, R.E. Stoller, A.S. Kumar (American Society for Testing and Materials, Philadelphia, 1990), pp. 673–683Google Scholar
  17. 17.
    F.A. Garner, M.B. Toloczko, B.H. Sencer, Comparison of Swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J. Nucl. Mater. 276, 123–142 (2000)CrossRefGoogle Scholar
  18. 18.
    C. Sun, F.A. Garner, L. Shao, X. Zhang, S.A. Maloy, Influence of injected interstitials on the void swelling in two structural variants of 304L stainless steel induced by self-ion irradiation at 500 ℃. Nucl. Instrum. Methods in Phys. Res. B (in press)Google Scholar
  19. 19.
    F.A. Garner, D.L. Porter, A reassessment of the swelling behavior of AISI 304L stainless steel, in Proceedings International Conference on Dimensional Stability and Mechanical Behavior of Irradiated Metals and Alloys, vol. II, pp. 41–44, 11–13 April 1983, Brighton, EnglandGoogle Scholar
  20. 20.
    E.A. Little, D.A. Stow, Void-swelling in iron and ferritic steels: II. An experimental survey of materials irradiated in a fast reactor. J. Nucl. Mater. 87, 25–39 (1979)CrossRefGoogle Scholar
  21. 21.
    D.S. Gelles, Microstructural examination of neutron-irradiated simple ferritic alloys. J. Nucl. Mater. 108–109, 515–526 (1982)CrossRefGoogle Scholar
  22. 22.
    D.S. Gelles, Void swelling in binary Fe–Cr alloys at 200 dpa. J. Nucl. Mater. 225, 163–174 (1995)CrossRefGoogle Scholar
  23. 23.
    Y. Katoh, A. Kohyama, D.S. Gelles, Swelling and dislocation evolution in simple ferritic alloys irradiated to high fluence in FFTF/MOTA. J. Nucl. Mater. 225, 154–162 (1995)CrossRefGoogle Scholar
  24. 24.
    S.I. Porollo, A.M. Dvoriashin, A.N. Vorobyev, Y. Konobeev, The microstructure and tensile properties of Fe–Cr alloys after neutron irradiation at 400 ℃ to 5.5–7.1 dpa. J. Nucl. Mater. 256, 247–253 (1998)CrossRefGoogle Scholar
  25. 25.
    Y.V. Konobeev, A.M. Dvoriashin, S.I. Porollo, F.A. Garner, Swelling and microstructure of pure Fe and Fe–Cr alloys after neutron irradiation to ∼26 dpa at 400 ℃. J. Nucl. Mater. 355, 124–130 (2006)CrossRefGoogle Scholar
  26. 26.
    B.H. Sencer, F.A. Garner, Compositional and temperature dependence of void swelling in model Fe–Cr base alloys irradiated in EBR-II. J. Nucl. Mater. 283–287, 164–168 (2000)CrossRefGoogle Scholar
  27. 27.
    W. Johnston, T. Lauritzen, J. Rosolowski, A. Turkalo, Void swelling of ferritic alloys bombarded with nickel ions, effects of radiation on materials: eleventh conference. ASTM STP 782, 809–823 (1982)Google Scholar
  28. 28.
    A. Bhattacharya, E. Meslin, J. Henry, A. Barbu, S. Poissonnet, B. Decamps, Effect of chromium on void swelling in ion irradiated high purity Fe–Cr alloys. Acta Mater. 108, 241–251 (2016)CrossRefGoogle Scholar
  29. 29.
    E. Getto, K. Sun, A.M. Monterrosa, Z. Jiao, M.J. Hackett, G.S. Was, Void swelling and microstructure evolution at very high damage level in self-ion irradiated ferritic-martensitic steels. J. Nucl. Mater. 480, 159–176 (2016)CrossRefGoogle Scholar
  30. 30.
    E. Getto, G. Vancoevering, G.S. Was, The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels. J. Nucl. Mater. 484, 193–208 (2017)CrossRefGoogle Scholar
  31. 31.
    X. Wang, A.M. Monterrosa, F. Zhang, H. Huang, Q. Yan, Z. Jiao, G.S. Was, L. Wang, Void swelling in high dose ion-irradiated reduced activation ferritic–martensitic steels. J. Nucl. Mater. 462, 119–125 (2015)CrossRefGoogle Scholar
  32. 32.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM (Cadence Design Systems, 2008)Google Scholar
  33. 33.
    J.G. Gigax, E. Aydogan, T. Chen, D. Chen, L. Shao, Y. Wu, W.Y. Lo, Y. Yang, F.A. Garner, The influence of ion beam rastering on the swelling of self-ion irradiated pure iron at 450 ℃. J. Nucl. Mater. 465, 343–348 (2015)CrossRefGoogle Scholar
  34. 34.
    E. Getto, Z. Jiao, A.M. Monterrosa, K. Sun, G.S. Was, Effect of irradiation mode on the microstructure of self-ion irradiated ferritic-martensitic alloys. J. Nucl. Mater. 465, 116–126 (2015)CrossRefGoogle Scholar
  35. 35.
    ASTM E521, Standard Practice for Neutron Radiation Damage Simulation by Charged-particle Irradiation (ASTM International, West Conshohocken, PA)Google Scholar
  36. 36.
    F.A. Garner, Impact of the injected interstitial on the correlation of charged particle and neutron-induced radiation damage. J. Nucl. Mater. 117, 177–197 (1983)CrossRefGoogle Scholar
  37. 37.
    L. Shao, C.-C. Wei, J. Gigax, A. Aitkaliyeva, D. Chen, B.H. Sencer, F.A. Garner, Effect of defect imbalance on void swelling distributions produced in pure iron by 3.5 MeV self-ions. J. Nucl. Mater. 453, 176–181 (2014)CrossRefGoogle Scholar
  38. 38.
    D.L. Plumton, W.G. Wolfer, Suppression of void nucleation by injected interstitials during heavy ion bombardment. J. Nucl. Mater. 120, 245–253 (1984)CrossRefGoogle Scholar
  39. 39.
    E.H. Lee, L.K. Mansur, M.H. Yoo, Spatial variation in void volume during charged particle bombardment-the effects of injected interstitials. J. Nucl. Mat. 85&86, 577–581 (1979)CrossRefGoogle Scholar
  40. 40.
    D.L. Plumton, G.L. Kulcinski, The magnitude and distribution of the excess interstitial fraction during heavy ion irradiation. J. Nucl. Mat. 133&134, 444–447 (1985)CrossRefGoogle Scholar
  41. 41.
    L.K. Mansur, M.H. Yoo, Advances in the theory of swelling in irradiated metals and alloys. J. Nucl. Mater. 85&86, 523–532 (1979)CrossRefGoogle Scholar
  42. 42.
    A.D. Brailsford, L.K. Mansur, Effect of self-ion injection in simulation studies of void swelling. J. Nucl. Mater. 71, 110–116 (1977)CrossRefGoogle Scholar
  43. 43.
    V. Bryk, O. Borodin, A. Kalchenko, V. Voyevodin, V. Ageev, A. Nikitina, V. Novikov, V. Inozemtsev, F.A. Garner, Ion issues on irradiation behavior of structural materials at high doses and gas concentrations, in Proceedings Accelerator Applications 2013, 5–8 August 2013, Bruges, BelgiumGoogle Scholar
  44. 44.
    Y.E. Kupriiyanova, V.V. Bryk, O.V. Borodin, A.S. Kalchenko, V.N. Voyevodin, G.D. Tolstolutskaya, F.A. Garner, Use of double and triple-ion irradiation to study the influence of helium and hydrogen on void swelling of 8–12% Cr ferritic-martensitic steels. J. Nucl. Mater. 468, 264–273 (2016)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • C. Sun
    • 1
    Email author
  • L. Malerba
    • 2
  • M. J. Konstantinovic
    • 2
  • F. A. Garner
    • 3
  • S. A. Maloy
    • 4
  1. 1.Idaho National LaboratoryIdaho FallsUSA
  2. 2.SCK.CEN, Belgian Nuclear Research CentreMolBelgium
  3. 3.Texas A&M UniversityCollege StationUSA
  4. 4.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations