Advertisement

Advanced Characterization of Oxidation Processes and Grain Boundary Migration in Ni Alloys Exposed to 480 °C Hydrogenated Steam

  • S. Y. PersaudEmail author
  • B. Langelier
  • A. Eskandari
  • H. Zhu
  • G. A. Botton
  • R. C. Newman
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Advanced electron microscopy and surface science techniques were applied to characterize inter- and intragranular oxidation in Ni–Fe–Cr alloys after exposure to 480 °C hydrogenated steam. Intragranular internal Fe and Cr oxidation was observed in all cases while intergranular oxidation, exclusively external or penetrative, varied depending on the Cr content of the alloy. The kinetics and morphology of intragranular internal oxidation and nodule growth were studied through successive short-term exposures with characterization performed between exposures. FIB 3D serial sectioning was used to reconstruct volumes containing oxidized grain boundaries and revealed that diffusion-induced grain boundary migration may play a fundamental role in increasing the outward flux of Cr, Ti, and Al near grain boundaries, depending on the extent of intergranular Cr carbide precipitation. In addition, atom probe tomography was used to study the behaviour of minor impurity elements, Al and Ti, and initial oxidation processes. Further analyses of oxidized samples using three-dimensional ToF-SIMS are also discussed.

Keywords

Alloy 600 Alloy 690 Internal oxidation Primary water stress corrosion cracking Intergranular oxidation Diffusion-induced grain boundary migration 

References

  1. 1.
    S. Lozano-Perez, J.M. Titchmarsh, TEM investigations of intergranular stress corrosion cracking in austenitic alloys in PWR environmental conditions. Mater. High Temp. 20(4), 573–579 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Lozano-Perez, P. Rodrigo, L.C. Gontard, Three-dimensional characterization of stress corrosion cracks. J. Nucl. Mater. 408(3), 289–295 (2011)CrossRefGoogle Scholar
  3. 3.
    L.E. Thomas, S.M. Bruemmer, High-resolution characterization of intergranular attack and stress corrosion cracking of alloy 600 in high-temperature primary water. Corrosion 56(6), 572–587 (2000)CrossRefGoogle Scholar
  4. 4.
    S.M. Bruemmer, L.E. Thomas, High-resolution analytical electron microscopy characterization of corrosion and cracking at buried interfaces. Surf. Interface Anal. 31(7), 571–581 (2001)CrossRefGoogle Scholar
  5. 5.
    J. Panter, B. Viguier, J.M. Cloué, M. Foucault, P. Combrade, E. Andrieu, Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600. J. Nucl. Mater. 348(1–2), 213–221 (2006)CrossRefGoogle Scholar
  6. 6.
    M. Sennour, P. Laghoutaris, C. Guerre, R. Molins, Advanced TEM characterization of stress corrosion cracking of alloy 600 in pressurized water reactor primary water environment. J. Nucl. Mater. 393(2), 254–266 (2009)CrossRefGoogle Scholar
  7. 7.
    G.A. Young, W.W. Wilkening, D.S. Morton, E. Richey, N. Lewis, The mechanism and modeling of intergranular stress corrosion cracking of nickel-chromium-iron alloys exposed to high purity water, in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ed. T.R. Allen, P.J. King, L. Nelson (The Minerals, Metals & Materials Society (TMS), Salt Lake City, UT, 2005), pp. 913–924Google Scholar
  8. 8.
    P.M. Scott, M. Le Calvar, Some possible mechanisms of intergranular stress corrosion cracking of alloy 600 in PWR primary water, in Proceedings of the 6th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ed by E.P. Simonen (The Minerals, Metals, and Materials Society (TMS), San Diego, CA, 1993), pp. 657–665Google Scholar
  9. 9.
    H.-B. Park, Y.-H. Kim, B.-W. Lee, K.-S. Rheem, Effect of heat treatment on fatigue crack growth of Inconel 690 and Inconel 600. J. Nucl. Mater. 231(3), 204–212 (1996)CrossRefGoogle Scholar
  10. 10.
    G.S. Was, J.K. Sung, T.M. Angeliu, Effects of grain boundary chemistry on the intergranular cracking behaviour of Ni-16Cr-9Fe in high-temperature water. Metall. Trans. A 23A(1), 3343–3359 (1992)Google Scholar
  11. 11.
    G.P. Airey, Microstructural aspects of the thermal treatment of Inconel alloy 600. Metallography 13(1), 21–41 (1980)CrossRefGoogle Scholar
  12. 12.
    S.M. Bruemmer, G.S. Was, Microstructural and microchemical mechanisms controlling intergranular stress corrosion cracking in light-water-reactor systems. J. Nucl. Mater. 216, 348–363 (1994)CrossRefGoogle Scholar
  13. 13.
    T.S. Gendron, S.J. Bushby, R.D. Cleland, R.C. Newman, Oxidation embrittlement of alloy 600 in hydrogenated steam at 400 °C, in Proceedings of the Second International Conference on Corrosion Deformation Interactions CDI ‘96 in Conjunction with EUROCORR ‘96 (The Institute of Materials, Nice, France, 1997) pp. 484–495Google Scholar
  14. 14.
    T.S. Gendron, S.J. Bushby, R.D. Cleland, R.C. Newman, Oxidation embrittlement of alloy 600 in hydrogenated steam at 400 °C. Analusis Mag. 25, 24–28 (1997)Google Scholar
  15. 15.
    S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, L.E. Thomas, Linking grain boundary microstructure to stress corrosion cracking of cold-rolled alloy 690 in pressurized water reactor primary water. Corrosion 69(10), 953–963 (2013)CrossRefGoogle Scholar
  16. 16.
    Q.J. Peng, J. Hou, T. Yonezawa, T. Shoji, Z.M. Zhang, F. Huang, E.H. Han, W. Ke, Environmentally assisted crack growth in one-dimensionally cold worked alloy 690TT in primary water. Corros. Sci. 57, 81–88 (2012)CrossRefGoogle Scholar
  17. 17.
    B. Langelier, S.Y. Persaud, R.C. Newman, G.A. Botton, An atom probe tomography study of internal oxidation processes in alloy 600. Acta Mater. 109, 55–68 (2016)CrossRefGoogle Scholar
  18. 18.
    S.Y. Persaud, A. Korinek, J. Huang, G.A. Botton, R.C. Newman, Internal oxidation of alloy 600 exposed to hydrogenated steam and the beneficial effects of thermal treatment. Corros. Sci. 86, 108–122 (2014)CrossRefGoogle Scholar
  19. 19.
    S.Y. Persaud, J. Smith, A. Korinek, G.A. Botton, R.C. Newman, High resolution analysis of oxidation in Ni–Fe–Cr alloys after exposure to 315 °C deaerated water with added hydrogen. Corros. Sci. 106, 236–248 (2016)CrossRefGoogle Scholar
  20. 20.
    B.M. Capell, G.S. Was, Selective internal oxidation as a mechanism for intergranular stress corrosion cracking of Ni–Cr–Fe alloys. Metall. Mater. Trans. A 38(6), 1244–1259 (2007)CrossRefGoogle Scholar
  21. 21.
    D.K. Schreiber, M.J. Olszta, D.W. Saxey, K. Kruska, K.L. Moore, S. Lozano-Perez, S.M. Bruemmer, Examinations of oxidation and sulfidation of grain boundaries in alloy 600 exposed to simulated pressurized water reactor primary water. Microsc. Microanal. 19(3), 676–687 (2013)CrossRefGoogle Scholar
  22. 22.
    G. Bertali, F. Scenini, M.G. Burke, Advanced microstructural characterization of the intergranular oxidation of alloy 600. Corros. Sci. 100, 474–483 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Bertali, F. Scenini, M.G. Burke, The intergranular oxidation susceptibility of thermally-treated alloy 600. Corros. Sci. 114, 112–122 (2017)CrossRefGoogle Scholar
  24. 24.
    R.C. Newman, F. Scenini, Another way to think about the critical oxide volume fraction for the internal-to-external oxidation transition? Corrosion 64(9), 721–726 (2008)CrossRefGoogle Scholar
  25. 25.
    F. Scenini, R.C. Newman, R.A. Cottosi, R.J. Jacko, Alloy oxidation studies related to PWSCC, in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ed. by T.R. Allen, P.J. King, L. Nelson (The Minerals, Metals & Materials Society (TMS), Salt Lake City, UT, 2005), pp. 891–902Google Scholar
  26. 26.
    F. Scenini, R.C. Newman, R.A. Cottis, R.J. Jacko, Effect of surface preparation on intergranular stress corrosion cracking of alloy 600 in hydrogenated steam. Corrosion 64(11), 824–835 (2008)CrossRefGoogle Scholar
  27. 27.
    G. Bertali, F. Scenini, M.G. Burke, The effect of residual stress on the preferential intergranular oxidation of alloy 600. Corros. Sci. 111, 494–507 (2016)CrossRefGoogle Scholar
  28. 28.
    P. Laghoutaris, J. Chêne, C. Guerre, O. Raquet, M. Sennour, R. Molins, F. Vaillant, P. Scott, Contribution to understanding of stress corrosion cracking of alloy 600 in PWR primary water. Energy Mater. 3(2), 119–125 (2013)CrossRefGoogle Scholar
  29. 29.
    X. Li, J. Wang, E.-H. Han, W. Ke, Corrosion behavior for alloy 690 and alloy 800 tubes in simulated primary water. Corros. Sci. 67, 169–178 (2013)CrossRefGoogle Scholar
  30. 30.
    P.M. Scott, An overview of internal oxidation as a possible explanation of intergranular stress corrosion cracking of alloy 600 in PWRs, in Proceedings of the 9th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, ed. by F.P. Ford, S.M. Bruemmer, G.S. Was (The Minerals, Metals & Materials Society (TMS), Newport Beach, CA, 1999), pp. 3–14Google Scholar
  31. 31.
    B. Langelier, S.Y. Persaud, A. Korinek, T. Casagrande, R.C. Newman, G.A. Botton, Effects of boundary migration and pinning particles on intergranular oxidation revealed by 2D and 3D analytical electron microscopy. Acta Mater. 131, 280–295 (2017)CrossRefGoogle Scholar
  32. 32.
    S.Y. Persaud, B. Langelier, A. Korinek, S. Ramamurthy, G.A. Botton, R.C. Newman, Characterization of initial intergranular oxidation processes in alloy 600 at a sub-nanometer scale (2017) (manuscript submitted for publication)Google Scholar
  33. 33.
    J.R. Mackert, R.D. Ringle, C.W. Fairhurst, High-temperature behavior of a Pd–Ag alloy for porcelain. J. Dent. Res. 62(12), 1229–1235 (1983)CrossRefGoogle Scholar
  34. 34.
    R.A. Rapp, The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys. Acta Metall. 9(8), 730–741 (1961)CrossRefGoogle Scholar
  35. 35.
    S. Guruswamy, S.M. Park, J.P. Hirth, R.A. Rapp, Internal oxidation of Ag–In alloys: stress relief and the influence of imposed strain. Oxid. Met. 26(1), 77–100 (1986)CrossRefGoogle Scholar
  36. 36.
    F.H. Stott, Y. Shida, D.P. Whittle, G.C. Wood, B.D. Bastow, The morphological and structural development of internal oxides in nickel–aluminum alloys at high temperatures. Oxid. Met. 18(3), 127–146 (1982)CrossRefGoogle Scholar
  37. 37.
    G.C. Wood, F.H. Stott, D.P. Whittle, Y. Shida, B.D. Bastow, The high-temperature internal oxidation and intergranular oxidation of nickel-chromium alloys. Corros. Sci. 23(1), 9–25 (1983)CrossRefGoogle Scholar
  38. 38.
    H.C. Yi, S.W. Guan, W.W. Smeltzer, A. Petric, Internal oxidation of Ni–Al and Ni–Al–Si alloys at the dissociation pressure of NiO. Acta Metall. Mater. 42(3), 981–990 (1994)CrossRefGoogle Scholar
  39. 39.
    S.Y. Persaud, S. Ramamurthy, R.C. Newman, Internal oxidation of alloy 690 in hydrogenated steam. Corros. Sci. 90, 606–613 (2015)CrossRefGoogle Scholar
  40. 40.
    M.J. Olszta, D.K. Schreiber, M.B. Toloczko, S.M. Bruemmer, Alloy 690 surface nanostructures during exposure to PWR primary water and potential influence on stress corrosion crack initiation, in Proceedings of the 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ed. by P.L. Andresen, M.D. Wright, G.O. Ilevbare (NACE International, Omnipress, Asheville, NC, 2013)Google Scholar
  41. 41.
    G. Economy, R.J. Jacko, F.W. Perment, IGSCC behaviour of alloy 600 steam generator tubing in water or steam tests above 360 °C. Corrosion 43(12), 727–734 (1987)CrossRefGoogle Scholar
  42. 42.
    G.S. Was, H.H. Tischner, R.M. Latanision, The influence of thermal treatment on the chemistry and structure of grain boundaries in Inconel 600. Metall. Trans. A 12A(8), 1397–1408 (1981)CrossRefGoogle Scholar
  43. 43.
    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, B. Gorman, In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2–3), 131–139 (2007)CrossRefGoogle Scholar
  44. 44.
    B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom Probe Microscopy (Springer Science, New York, 2012)CrossRefGoogle Scholar
  45. 45.
    K. Narayan, C.M. Danielson, K. Lagarec, B.C. Lowekamp, P. Coffman, A. Laquerre, M.W. Phaneuf, T.J. Hope, S. Subramaniam, Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology. J. Struct. Biol. 185(3), 278–284 (2014)CrossRefGoogle Scholar
  46. 46.
    J.W. Cahn, J.D. Pan, R.W. Balluffi, Diffusion induced grain boundary migration. Scr. Metall. 13(6), 503–509 (1979)CrossRefGoogle Scholar
  47. 47.
    J.W. Cahn, R.W. Balluffi, On diffusional mass transport in polycrystals containing stationary or migrating boundaries. Scr. Metall. 13(6), 499–502 (1979)CrossRefGoogle Scholar
  48. 48.
    M. Hillert, G.R. Purdy, Chemically induced grain boundary migration. Acta Metall. 26(2), 333–340 (1978)CrossRefGoogle Scholar
  49. 49.
    R.W. Balluffi, J.W. Cahn, Mechanism for diffusion induced grain boundary migration. Acta Metall. 29(3), 493–500 (1981)CrossRefGoogle Scholar
  50. 50.
    H. Aaron, H.I. Aaronson, Growth of grain boundary precipitates in Al–4%Cu by interfacial diffusion. Acta Metall. 16(6), 789–798 (1968)CrossRefGoogle Scholar
  51. 51.
    D.K. Schreiber, M.J. Olszta, S.M. Bruemmer, Grain boundary depletion and migration during selective oxidation of Cr in a Ni–5Cr binary alloy exposed to high-temperature hydrogenated water. Scr. Mater. 89, 41–44 (2014)CrossRefGoogle Scholar
  52. 52.
    D.K. Schreiber, M.J. Olszta, L.E. Thomas, S.M. Bruemmer, Grain boundary characterization of alloy 600 prior to and after corrosion by atom probe tomography and transmission electron microscopy, in Proceedings of the 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, ed. by P.L. Andresen, M.D. Wright, G.O. Ilevbare (NACE International, Omnipress, Asheville, NC, 2013)Google Scholar
  53. 53.
    D.K. Schreiber, M.J. Olszta, S.M. Bruemmer, Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni–Al binary alloy exposed to high-temperature water. Scr. Mater. 69(7), 509–512 (2013)CrossRefGoogle Scholar
  54. 54.
    C.M. Wang, D.K. Schreiber, M.J. Olszta, D.R. Baer, S.M. Bruemmer, Direct in situ TEM observation of modification of oxidation by the injected vacancies for Ni–4Al alloy using a microfabricated nanopost. Appl. Mater. Interfaces 7(31), 17272–17277 (2015)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • S. Y. Persaud
    • 1
    • 2
    Email author
  • B. Langelier
    • 3
  • A. Eskandari
    • 1
  • H. Zhu
    • 1
  • G. A. Botton
    • 3
  • R. C. Newman
    • 1
  1. 1.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada
  2. 2.Canadian Nuclear LaboratoriesChalk RiverCanada
  3. 3.Department of Materials Science and Engineering, Canadian Centre for Electron MicroscopyMcMaster UniversityHamiltonCanada

Personalised recommendations