Advertisement

Diffusion Processes as Possible Mechanisms for Cr Depletion at SCC Crack Tip

  • Josiane Nguejio
  • Jérôme Crépin
  • Cécilie DuhamelEmail author
  • Fabrice Gaslain
  • Catherine Guerre
  • François Jomard
  • Marc Maisonneuve
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Two mechanisms are studied to explain the asymmetrical chromium depletions observed ahead of SCC crack tips in nickel-base alloys: diffusion-induced grain boundary migration (DIGM) and plasticity-enhanced diffusion. On the one hand, DIGM is evidenced in a model Alloy 600 by focused ion beam (FIB) coupled with scanning electron microscopy (SEM) cross-section imaging and analytical transmission electron microscopy (TEM) after annealing at 500 °C under vacuum and at 340 °C after exposure to primary water. The occurrence of grain boundary migration depends on the grain boundary character and misorientation. On the other hand, the effect of plasticity on chromium diffusion in nickel single-crystals is investigated by performing diffusion tests during creep tests at 500 and 350 °C. An enhancement of Cr diffusion is observed and a linear relationship between the diffusion coefficient and strain rate is evidenced. At last, in an attempt to discriminate the two mechanisms, an analytical modeling of the Cr-depleted areas observed at propagating SCC crack tips is proposed.

Keywords

Diffusion Alloy 600 Chromium depletion DIGM Plasticity 

Notes

Acknowledgements

EDF is gratefully acknowledged for financial support. The authors want to thank SERMA Technologies (Grenoble, France) for FIB lamellae preparation for TEM observations. This work was carried out within the MATMECA consortium and supported by the ANR under contract number ANR-10-EQUIPEX-37. It has benefited from the facilities of the Laboratory MSSMat (UMR CNRS 8579), CentraleSupélec, France.

References

  1. 1.
    P. Scott, M. Le Calvar, Some possible mechanisms of intergranular stress corrosion cracking of Alloy 600 in PWR primary water, in 6th International Symposium on Environmental Degradation of Materials in Nuclear Power systems—Water Reactors, 1993Google Scholar
  2. 2.
    D.K. Schreiber, M.J. Olszta, S.M. Bruemmer, Grain boundary depletion and migration during selective oxidation of Cr in a Ni–5Cr binary alloy exposed to high-temperature hydrogenated water. Scr. Mater. 89, 41–44 (2014)CrossRefGoogle Scholar
  3. 3.
    Y.S. Lim, S.W. Kim, S.S. Hwang, H.P. Kim, C. Jang, Intergranular oxidation of Ni-based Alloy 600 in a simulated PWR primary water environment. Corros. Sci. 108, 125–133 (2016)CrossRefGoogle Scholar
  4. 4.
    L.E. Thomas, S.M. Bruemmer, High-resolution characterization of intergranular attack and stress corrosion cracking of Alloy 600 in high-temperature primary water. Corrosion 56, 572–587 (2000)CrossRefGoogle Scholar
  5. 5.
    M. Sennour, P. Laghoutaris, C. Guerre, R. Molins, Advanced TEM characterization of stress corrosion cracking of Alloy 600 in pressurized water reactor primary water environment. J. Nucl. Mater. 393, 254–266 (2009)CrossRefGoogle Scholar
  6. 6.
    D.K. Schreiber, M.J. Olszta, D.W. Saxey, K. Kruska, K.L. Moore, S. Lozano-Perez, S.M. Bruemmer, Examinations of oxidation and sulfidation of grain boundaries in Alloy 600 exposed to simulated pressurized water reactor primary water. Microsc. Microanal. 19, 676–687 (2013)CrossRefGoogle Scholar
  7. 7.
    K. Kruska, P. Chou, O. Calonne, L. Fournier, S. Lozano-Perez, Atom-probe tomography of surface and grain boundary oxides in Alloy 600 and Alloy 690 exposed to simulated PWR primary water, in 16th International Conference on the Environmental Degradation of Materials in Nuclear Power Systems, Asheville, US, 2013Google Scholar
  8. 8.
    M.J. Olszta, D.K. Schreiber, L.E. Thomas, S.M. Bruemmer, Penetrative internal oxidation from Alloy 690 surfaces and stress corrosion crack walls during exposure to PWR primary water, in 15th International Conference on the Environmental Degradation of Materials in Nuclear Power Systems, 2011Google Scholar
  9. 9.
    C. Guerre, P. Laghoutaris, J. Chêne, L. Marchetti, R. Molins, C. Duhamel, M. Sennou, Stress corrosion cracking of Alloy 600 in PWR primary water: influence of chromium, hydrogen and oxygen diffusion, in 15th International Conference on the Environmental Degradation of Materials in Nuclear Power Systems, Colorado Springs (USA), 2011Google Scholar
  10. 10.
    G. Bertali, F. Scenini, M.G. Burke, Advanced microstructural characterization of the intergranular oxidation of Alloy 600. Corros. Sci. 100, 474–483 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Bertali, F. Scenini, M.G. Burke, The intergranular oxidation susceptibility of thermally–treated Alloy 600. Corros. Sci. 114, 112–122 (2017)CrossRefGoogle Scholar
  12. 12.
    A.H. King, Diffusion induced grain boundary migration. Int. Mater. Rev. 32, 173–189 (1987)CrossRefGoogle Scholar
  13. 13.
    H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps (Pergamon Press, UK, 1982)Google Scholar
  14. 14.
    S.M. Daiser, C. Scholze, J.L. Maul, The checkerboard technique: an essential progress in SIMS data acquisition and evaluation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 35, 544–549 (1988)CrossRefGoogle Scholar
  15. 15.
    D.D. Pruthi, M.S. Anand, R.P. Agarwala, Diffusion of chromium in Inconel 600. J. Nucl. Mater. 64, 206–210 (1977)CrossRefGoogle Scholar
  16. 16.
    T.-F. Chen, G.P. Tiwari, Y. Iijima, K. Yamauchi, Volume and grain boundary diffusion of chromium in Ni-base Ni–Cr–Fe alloys. Mater. Trans. 44, 40–46 (2003)CrossRefGoogle Scholar
  17. 17.
    H. Mehrer, Diffusion in Solids (Springer, Berlin, 2007)CrossRefGoogle Scholar
  18. 18.
    J. Rŭžičková, B. Million, Self-diffusion of the components in the FCC phase of binary solid solutions of the Fe–Ni–Cr system. Mater. Sci. Eng. 50, 59–64 (1981)CrossRefGoogle Scholar
  19. 19.
    K. Monma, H. Suto, H. Oikawa, Diffusion of Ni63 and Cr51 in nickel-chromium alloys. J. Jpn. Inst. Met. 28, 188–192 (1964)CrossRefGoogle Scholar
  20. 20.
    M. Cohen, Self-diffusion during plastic deformation. Trans. Jpn. Inst. Met. 11, 145–151 (1970)CrossRefGoogle Scholar
  21. 21.
    A.R. Wazzan, E. Dorn, Analysis of enhanced diffusivity in nickel. J. Appl. Phys. 36, 222–228 (1965)CrossRefGoogle Scholar
  22. 22.
    E. Orowan, Problems of plastic glide. Proc. Phys. Soc. 52, 8–22 (1940)CrossRefGoogle Scholar
  23. 23.
    C. Wagner, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys. J. Electrochem. Soc. 99, 369–380 (1952)CrossRefGoogle Scholar
  24. 24.
    H. Lefaix-Jeuland, L. Marchetti, S. Perrin, M. Pijolat, M. Sennour, R. Molins, Oxidation kinetics and mechanisms of Ni-base alloys in pressurised water reactor primary conditions: influence of subsurface defects. Corros. Sci. 53, 3914–3922 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Le Hong, C. Amzallag, A. Gelpi, Modelling the SCC initiation on alloy 600 in primary water of PWRs, in 9th International Conference on the Environmental Degradation of Materials in Nuclear Power Systems, Newport Beach, CA, 1999Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Josiane Nguejio
    • 1
    • 2
  • Jérôme Crépin
    • 1
  • Cécilie Duhamel
    • 1
    Email author
  • Fabrice Gaslain
    • 1
  • Catherine Guerre
    • 2
  • François Jomard
    • 3
  • Marc Maisonneuve
    • 2
  1. 1.MINES ParisTechPSL Research UniversityEvryFrance
  2. 2.DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME)CEA, Université Paris-SaclayGif-sur-YvetteFrance
  3. 3.Laboratoire GEMaC, UMR 8635CNRS—Université de VersaillesVersailles CedexFrance

Personalised recommendations