Advertisement

Solute Clustering in As-irradiated and Post-irradiation-Annealed 304 Stainless Steel

  • Yimeng Chen
  • Yan Dong
  • Emmanuelle Marquis
  • Zhijie Jiao
  • Justin Hesterberg
  • Gary Was
  • Peter ChouEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

A commercial purity 304SS was irradiated to 5 dpa Kinchin-Pease (10 dpa full-cascade) using 2 meV protons at 360 °C. Post-irradiation annealing (PIA) was applied to reduce or remove IASCC susceptibility. This paper focuses on the links between irradiation-induced hardening and irradiated microstructures of the as-irradiated and PIA conditions; the irradiated microstructure is assessed by transmission electron microscopy (TEM) and atom probe tomography (APT). Dislocation loops, Ni–Si clusters, and Cu-enriched clusters are present in the as-irradiated condition. When the dislocation loops are removed by PIA, ~40% of the as-irradiated hardness remains and can be rationally attributed to the solute clusters still present in the PIA microstructure. The observations indicate that hardening in the as-irradiated condition is controlled by both dislocation loops and solute clusters and suggest that radiation-induced solute clusters may be important to detailed understanding of IASCC (irradiation-assisted stress corrosion cracking).

Keywords

IASCC Irradiated stainless steel Solute clusters Dislocation loops Hardness Atom probe tomography 

Notes

Acknowledgements

The work presented in this paper was funded by the Electric Power Research Institute.

References

  1. 1.
    S.M. Bruemmer, E.P. Simonen, P.M. Scott, P.L. Andresen, G.S. Was, J.L. Nelson, J. Nucl. Mater. 274, 299–314 (1999)CrossRefGoogle Scholar
  2. 2.
    P. Scott, Final Review of the Cooperative Irradiation-Assisted Stress Corrosion Cracking Research Program. EPRI, Palo Alto, CA: 2010. 1020986Google Scholar
  3. 3.
    K. Fukuya, J. Nucl. Sci. Technol. 50(3), 213–254 (2013)CrossRefGoogle Scholar
  4. 4.
    C. Pokor, G. Courtemanche, B. Tanguy, J.-P. Massaud, N. Monteil, IASCC of Core Internals of PWRs: EDF R&D and Engineering program to assess internals lifetime management, in Fontevraud 7 Symposium—Contribution of Materials Investigations to Improve the Safety and Performance of LWRs, Avignon, France, 26–30 September 2010, Paris, France, SFENGoogle Scholar
  5. 5.
    O.K. Chopra, A.S. Rao, J. Nucl. Mater. 409, 235–256 (2011)CrossRefGoogle Scholar
  6. 6.
    R.W. Bosch et al., J. Nucl. Mater. 461, 112–121 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Etienne, B. Radiguet, P. Pareige, J.-P. Massoud, C. Pokor, J. Nucl. Mater. 382, 64–69 (2008)CrossRefGoogle Scholar
  8. 8.
    G. Was, Z. Jiao, Potential for Atom Probe Tomography in Understanding Irradiation Assisted Stress Corrosion Cracking: Characterization of Proton-Irradiated, Si-Containing Stainless Steels. EPRI, Palo Alto, CA: 2011. 1022815Google Scholar
  9. 9.
    Z. Jiao, G.S. Was, Acta Mater. 59(3), 1220–1238 (2011)CrossRefGoogle Scholar
  10. 10.
    T. Toyama, Y. Nozawa, W. Van Renterghem, Y. Matsukawa, M. Hatakeyama, Y. Nagai, A. Al Mazouzi, S. Van Dyck, J. Nucl. Mater. 418, 62–68 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Chen, P.H. Chou, E.A. Marquis, J. Nucl. Mater. 451, 130–136 (2014)CrossRefGoogle Scholar
  12. 12.
    P. Chou, N. Soneda, K. Nishida, K. Dohi, E.A. Marquis, Y. Chen, Proceedings of Fontevraud 8 Conference: Contribution of Materials Investigations and Operating Experience to LWR’s Safety, Performance and Reliability, Avignon, France, 15–18 September 2014Google Scholar
  13. 13.
    K. Fujii, K. Fukuya, J. Nucl. Mater. 469, 82–88 (2016)CrossRefGoogle Scholar
  14. 14.
    Z. Jiao, G. Was, Y. Chen, E. Marquis, Program on Technology Innovation: Effects of Post Irradiation Annealing on IASCC. EPRI, Palo Alto, CA: 2015. 3002005475Google Scholar
  15. 15.
    J.T. Busby, G.S. Was, E.A. Kenik, J. Nucl. Mater. 302, 20–40 (2002)CrossRefGoogle Scholar
  16. 16.
    K. Fukuya, M. Nakano, K. Fujii, T. Torimaru, Y. Kitsunai, J. Nucl. Sci. Technol. 41, 1218–1227 (2004)CrossRefGoogle Scholar
  17. 17.
    Z. Jiao, J. Hesterberg, G. Was, Effect of Post-Irradiation Annealing on Hardening, Localized Deformation and IASCC of a Proton-Irradiated 304 Stainless Steel, 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Ottawa, Ontario, Canada, 9–13 August 2015Google Scholar
  18. 18.
    Z. Jiao, G.S. Was, J. Nucl. Mater. 382, 203–209 (2008)CrossRefGoogle Scholar
  19. 19.
    Z. Jiao, G.S. Was, J. Nucl. Mater. 407, 34–43 (2010)CrossRefGoogle Scholar
  20. 20.
    Z. Jiao, G.S. Was, J. Nucl. Mater. 408, 246–256 (2011)CrossRefGoogle Scholar
  21. 21.
    Z. Jiao, M. McMurtrey, G.S. Was, Scripta Mater. 65, 159–162 (2011)CrossRefGoogle Scholar
  22. 22.
    R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods. Phy. Res. B 310, 75–80 (2013)CrossRefGoogle Scholar
  23. 23.
    G. Gupta, Z. Jiao, A.N. Ham, J.T. Busby, G.S. Was, J. Nucl. Mater. 351, 162–173 (2006)CrossRefGoogle Scholar
  24. 24.
    K. Thompson et al., Ultramicroscopy 107(2–3), 131–139 (2007)CrossRefGoogle Scholar
  25. 25.
    T. Tsong, Surf. Sci. 70(1), 211–233 (1978)CrossRefGoogle Scholar
  26. 26.
    A. Etienne, B. Radiguet, P. Pareige, J. Nucl. Mater. 406(2), 251–256 (2010)CrossRefGoogle Scholar
  27. 27.
    K. Fukuya, K. Fujii, H. Nishioka, Y. Kitsunai, J. Nucl. Sci. Technol. 43(2), 159–173 (2006)CrossRefGoogle Scholar
  28. 28.
    D.J. Edwards, E.P. Simonen, F.A. Garner, L.R. Greenwood, B.M. Oliver, S.M. Bruemmer, J. Nucl. Mater. 317(1), 32–45 (2003)CrossRefGoogle Scholar
  29. 29.
    T. Takeuchi et al., J. Nucl. Mater. 402(2), 93–101 (2010)CrossRefGoogle Scholar
  30. 30.
    P. Auger et al., J. Nucl. Mater. 225, 225–230 (1995)CrossRefGoogle Scholar
  31. 31.
    K. Fujii et al., J. Nucl. Mater. 340(2), 247–258 (2005)CrossRefGoogle Scholar
  32. 32.
    A. Etienne, B. Radiguet, P. Pareige, J.-P. Massoud, C. Pokor, J. Nucl. Mater. 382(1), 64–69 (2008)CrossRefGoogle Scholar
  33. 33.
    E. Kenik, J. Busby, Mater. Sci. Eng. R 73(7), 67–83 (2012)CrossRefGoogle Scholar
  34. 34.
    W. Van Renterghem, M.J. Konstantinović, M. Vankeerberghen, J. Nucl. Mater. 452, 158–165 (2014)CrossRefGoogle Scholar
  35. 35.
    A. Jenssen, J. Stjärnsäter, T. Torimaru, Y. Kitsunai, BWRVIP-221: BWR Vessel and Internals Project, Crack Growth in High Fluence BWR Materials—Phase1: Crack Growth Rate Testing of Types 304L and 316L at Doses Ranging from 3.5 to 13 dpa. EPRI, Palo Alto, CA: 2009. 1019079Google Scholar
  36. 36.
    J.T. Busby, M.C. Hash, G.S. Was, J. Nucl. Mater. 336, 267–278 (2005)CrossRefGoogle Scholar
  37. 37.
    G.E. Lucas, J. Nucl. Mater. 205, 287 (1993)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yimeng Chen
    • 1
    • 4
  • Yan Dong
    • 1
  • Emmanuelle Marquis
    • 1
  • Zhijie Jiao
    • 2
  • Justin Hesterberg
    • 2
  • Gary Was
    • 2
  • Peter Chou
    • 3
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Nuclear Engineering and Radiological SciencesUniversity of MichiganAnn ArborUSA
  3. 3.Electric Power Research InstitutePalo AltoUSA
  4. 4.CAMECA Instruments, IncMadisonUSA

Personalised recommendations