Advertisement

On the Use of Density-Based Algorithms for the Analysis of Solute Clustering in Atom Probe Tomography Data

  • Emmanuelle A. MarquisEmail author
  • Vicente Araullo-Peters
  • Yan Dong
  • Auriane Etienne
  • Svetlana Fedotova
  • Katsuhiko Fujii
  • Koji Fukuya
  • Evgenia Kuleshova
  • Anabelle Lopez
  • Andrew London
  • Sergio Lozano-Perez
  • Yasuyoshi Nagai
  • Kenji Nishida
  • Bertrand Radiguet
  • Daniel Schreiber
  • Naoki Soneda
  • Mattias Thuvander
  • Takeshi Toyama
  • Faiza Sefta
  • Peter Chou
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Because atom probe tomography (APT) provides three-dimensional reconstructions of small volumes by resolving atomic chemical identities and positions, it is uniquely suited to analyze solute clustering phenomena in materials. A number of approaches have been developed to extract clustering information from the 3D reconstructed dataset, and numerous reports can be found applying these methods to a wide variety of materials questions. However, results from clustering analyses can differ significantly from one report to another, even when performed on similar microstructures, raising questions about the reliability of APT to quantitatively describe solute clustering. In addition, analysis details are often not provided, preventing independent confirmation of the results. With the number of APT research groups growing quickly, the APT community recognizes the need for educating new users about common methods and artefacts, and for developing analysis and data reporting protocols that address issues of reproducibility, errors, and variability. To this end, a round robin experiment was organized among ten different international institutions. The goal is to provide a consistent framework for the analysis of irradiated stainless steels using APT. Through the development of more reliable and reproducible data analysis and through communication, this project also aims to advance the understanding between irradiated microstructure and materials performance by providing more complete quantitative microstructural input for modeling. The results, methods, and findings of this round robin will also apply to other clustering phenomena studied using APT, beyond the theme of radiation damage.

Keywords

Atom probe tomography Cluster analysis 

Notes

Acknowledgements

The authors acknowledge the voluntary participation by the members of the APT Round Robin and financial support of EPRI and EDF for the analysis of the aggregate results.

References

  1. 1.
    J. Hyde, M. Burke, B. Gault, D.W. Saxey, P. Styman, K. Wilford, T. Williams, Ultramicroscopy 111, 676–682 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Etienne, B. Radiguet, P. Pareige, J.P. Massoud, C. Pokor, J. Nucl. Mater. 382, 64–69 (2008)CrossRefGoogle Scholar
  3. 3.
    T. Toyama, Y. Nozawa, W. Van Renterghem, Y. Matsukawa, M. Hatakeyama, Y. Nagai, A. Al Mazouzi, S. Van Dyck, J. Nucl. Mater. 418, 62–68 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Chen, P.H. Chou, E.A. Marquis, J. Nucl. Mater. 451, 130–136 (2014)CrossRefGoogle Scholar
  5. 5.
    D.J. Larson, P.J. Maziasz, I.S. Kim, K. Miyahara, Scripta. Mater. 44, 359–364 (2001)CrossRefGoogle Scholar
  6. 6.
    M.K. Miller, E.A. Kenik, Microsc. Microanal. 10, 336–341 (2004)CrossRefGoogle Scholar
  7. 7.
    B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom Probe Microscopy, Springer, 2012Google Scholar
  8. 8.
    B. Gault, F. Danoix, K. Hoummada, D. Mangelinck, H. Leitner, Ultramicroscopy 113, 182–191 (2012)CrossRefGoogle Scholar
  9. 9.
    A.R. Waugh, E.D. Boyes, M.J. Southon, Surf. Sci. 69, 109–142 (1876)Google Scholar
  10. 10.
    D.J. Rose, J. Applied Phys. 27, 215–220 (1956)CrossRefGoogle Scholar
  11. 11.
    F. Vurpillot, A. Bostel, E. Cadel, D. Blavette, Ultramicroscopy 84, 213–224 (2000)CrossRefGoogle Scholar
  12. 12.
    M.K. Miller, M.G. Hetherington, Surf. Sci. 246, 442–449 (1991)CrossRefGoogle Scholar
  13. 13.
    F. Vurpillot, A. Bostel, D. Blavette, Appl. Phys. Lett. 76, 3127–3129 (2000)CrossRefGoogle Scholar
  14. 14.
    D.W. Saxey, Ultramicroscopy 111, 473–479 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Heinrich, T.a. Al-Kassab, R. Kirchheim, Mater. Sci. Eng. A 35, 92–98 (2003)Google Scholar
  16. 16.
    D. Vaumousse, A. Cerezo, P.J. Warren, Ultramicroscopy 95, 215–221 (2003)CrossRefGoogle Scholar
  17. 17.
    A. Cerezo, L. Davin, Surf. Interf. Anal. 39, 184–188 (2007)CrossRefGoogle Scholar
  18. 18.
    L.T. Stephenson, M.P. Moody, P.V. Liddicoat, S.P. Ringer, Microsc. Microanal. 13, 448–463 (2007)CrossRefGoogle Scholar
  19. 19.
    D. Blavette, S. Chambreland, Journal de Physique Colloques 47, C7–503 (1986)Google Scholar
  20. 20.
    B. Radiguet, A. Barbu, P. Pareige, J. Nucl. Mater. 360, 104–117 (2007)CrossRefGoogle Scholar
  21. 21.
    J.M. Hyde, A. Cerezo, T.J. Williams, Ultramicroscopy 109, 502–509 (2009)CrossRefGoogle Scholar
  22. 22.
    E. Meslin, B. Radiguet, M. Loyer-Prost, Acta Mater. 61, 6246–6254 (2013)CrossRefGoogle Scholar
  23. 23.
    F. Vurpillot, F. De Geuser, G. Da Costa, D. Blavette, J. Microscopy-Oxford 216, 234–240 (2004)CrossRefGoogle Scholar
  24. 24.
    F. De Geuser, W. Lefebvre, D. Blavette, Phil. Mag. Lett. 86, 227–234 (2006)CrossRefGoogle Scholar
  25. 25.
    L. Couturier, F. De Geuser, A. Deschamps, Mater. Charact. 121, 61–67 (2016)CrossRefGoogle Scholar
  26. 26.
    W. Lefebvre, T. Philippe, F. Vurpillot, Ultramicroscopy 111, 200–206 (2011)CrossRefGoogle Scholar
  27. 27.
    O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, D.N. Seidman, Microsc. Microanal. 6, 437–444 (2000)Google Scholar
  28. 28.
    M.P. Moody, L.T. Stephenson, A.V. Ceguerra, S.P. Ringer, Microsc. Res. Tech. 71, 542–550 (2008)CrossRefGoogle Scholar
  29. 29.
    J.M. Hyde, E.A. Marquis, K.B. Wilford, T.J. Williams, Ultramicroscopy 111, 440–447 (2011)CrossRefGoogle Scholar
  30. 30.
    P.D. Styman, J.M. Hyde, K. Wilford, G.D.W. Smith, Ultramicroscopy 132, 258–264 (2013)CrossRefGoogle Scholar
  31. 31.
    C.A. Williams, D. Haley, E.A. Marquis, G.D. Smith, M.P. Moody, Ultramicroscopy 132, 271–278 (2013)CrossRefGoogle Scholar
  32. 32.
    R.K. Marceau, L.T. Stephenson, C.R. Hutchinson, S.P. Ringer, Ultramicroscopy 111, 738–742 (2011)CrossRefGoogle Scholar
  33. 33.
    E.A. Jaegle, P.P. Choi, D. Raabe, Microsc. Microanal. 20, 1662–1671 (2014)CrossRefGoogle Scholar
  34. 34.
    R.P. Kolli, D.N. Seidman, Microsc. Microanal. 13, 272–284 (2007)CrossRefGoogle Scholar
  35. 35.
    D.J. Larson, T. Prosa, R. Ulfig, B. Geiser, T.F. Kelly, Local Electrode Atom Probe Tomography (Springer, 2014)Google Scholar
  36. 36.
    W. Lefebvre-Ulrikson, F. Vurpillot, X. Sauvage, Atom Probe Tomography Put Theory into Practice (Elsevier, 2016)Google Scholar
  37. 37.
    D. Haley, 3Depict—Visualisation & Analysis for Atom Probe, 2010Google Scholar
  38. 38.
    T. Philippe, F. De Geuser, S. Duguay, W. Lefebvre, O. Cojocaru-Miredin, G. Da Costa, D. Blavette, Ultramicroscopy 109 (2009)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Emmanuelle A. Marquis
    • 1
    Email author
  • Vicente Araullo-Peters
    • 1
  • Yan Dong
    • 1
  • Auriane Etienne
    • 2
  • Svetlana Fedotova
    • 3
  • Katsuhiko Fujii
    • 4
  • Koji Fukuya
    • 4
  • Evgenia Kuleshova
    • 3
  • Anabelle Lopez
    • 5
  • Andrew London
    • 6
  • Sergio Lozano-Perez
    • 6
  • Yasuyoshi Nagai
    • 7
  • Kenji Nishida
    • 8
  • Bertrand Radiguet
    • 2
  • Daniel Schreiber
    • 9
  • Naoki Soneda
    • 8
  • Mattias Thuvander
    • 10
  • Takeshi Toyama
    • 7
  • Faiza Sefta
    • 11
  • Peter Chou
    • 12
  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Groupe de Physique Des Matériaux, UMR CNRS 6634Université de RouenSaint Etienne du Rouvray CedexFrance
  3. 3.Russian Research Center ‘Kurchatov Institute’, Pl. KurtachovaMoscowRussian Federation
  4. 4.Institute of Nuclear Safety System Inc.MihamaJapan
  5. 5.DEN-Service D’Etudes Des Matériaux Irradiés, CEAUniversité Paris-SaclayGif-Sur-YvetteFrance
  6. 6.Department of MaterialsUniversity of OxfordOxfordUK
  7. 7.The Oarai Center, Institute for Materials Research, Tohoku UniversityOaraiJapan
  8. 8.Materials Science Research LaboratoryCentral Research Institute of Electric Power IndustryNagasakaJapan
  9. 9.Energy and Environment DirectoratePacific Northwest National LaboratoryRichlandUSA
  10. 10.Department of PhysicsChalmers University of TechnologyGöteborgSweden
  11. 11.Departement Métallurgie, EDF—R&DMoret-Sur-LoingFrance
  12. 12.Electric Power Research InstitutePalo AltoUSA

Personalised recommendations