Advertisement

Modeling Corrosion Kinetics of Zirconium Alloys in Loss-of-Coolant Accident (LOCA)

  • Léo Borrel
  • Adrien Couet
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Correctly predicting the mechanical behavior of zirconium fuel cladding during a LOCA transient is critical for nuclear safety analysis as the fuel rod needs to maintain its coolable geometry throughout the LOCA sequence. A physically-based zirconium alloy corrosion model called the Coupled Current Charge Compensation (C4) is developed. The model calculates the coupling of oxygen, electron and hydrogen currents and predicts the oxide, oxygen-stabilized \( \alpha \)-Zr and prior-\( \beta \)-Zr layers kinetics as well as the oxygen concentration profiles during a LOCA scenario. The results obtained during isothermal conditions are compared to experimental data for validation. Future developments of the C4 model include an implementation into the nuclear performance code BISON, which currently does not provide a physical description of the oxygen and hydrogen concentration profiles in the cladding. Thanks to the C4 implementation into BISON, structural integrity of the fuel cladding following a LOCA event can be assessed.

Keywords

Zirconium corrosion Oxidation model Oxygen diffusion LOCA 

Notes

Acknowledgements

Funding for this project was provided by CASL (Consortium for Advanced Simulation of Light Water Reactors).

References

  1. 1.
    M. Billone, Y. Yan, T. Burtseva, R. Daum, Cladding embrittlement during postulated loss-of-coolant accidents. Off. Nucl. Regul. Res., NUREG/CR-6967, 386 (2008) Google Scholar
  2. 2.
    A. Motta, A. Couet, R.J. Comstock, Corrosion of zirconium alloys used for nuclear fuel cladding. Ann. Rev. Mater. Res. 45, 311–343 (2015)CrossRefGoogle Scholar
  3. 3.
    X. Ma, C. Toffolon-Masclet, T. Guilbert, D. Hamon, J.C. Brachet, Oxidation kinetics and oxygen diffusion in low-tin zircaloy-4 up to 1523 K. J. Nucl. Mater. 377(2), 359–369 (2008)CrossRefGoogle Scholar
  4. 4.
    K. Petterson, M. Billone et al., Nuclear fuel behaviour in loss-of-coolant accident (loca) conditions, Report 6846, OECD (Organisation for Economic Co-operation and Development), January 2009Google Scholar
  5. 5.
    K. Hauffe, Oxidation of Metals (Springer, Berlin, 1995)CrossRefGoogle Scholar
  6. 6.
    C. Wagner, W. Schottky, Theory of controlled mixed phases. Z. Physik. Chem. B11, 163 (1930)Google Scholar
  7. 7.
    A. Couet, A. Motta, R.J. Comstock, A. Ambard, Hydrogen pick-up mechanism in zirconium alloys, in ASTM STP: Selected Technical Papers (2016)Google Scholar
  8. 8.
    A. Couet, A. Motta, A. Ambard, The coupled current charge compensation model for zirconium alloy fuel cladding oxidation: I. parabolic oxidation of zirconium alloys. Corros. Sci. 100, 73–84 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Romero, J. Partezana, R.J. Comstock, L. Hallstadius, A. Motta, A. Couet, Evolution of hydrogen pickup fraction with oxidation rate on zirconium alloys, in Proceeding of Top Fuel Reactor Fuel Performance 2015, p. 630, 13–17 September 2015Google Scholar
  10. 10.
    A.T. Fromhold, Parabolic oxidation of metals. Phys. Lett. A 29(3), 157–158 (1969)CrossRefGoogle Scholar
  11. 11.
    C. Corvalan-Moya, C. Desgranges, C. Toffolon-Masclet, C. Servant, J.C. Brachet, Numerical modeling of oxygen diffusion in the wall thickness of low-tin zircaloy-4 fuel cladding tube during high temperature (1100–1250 °C) steam oxidation. J. Nucl. Mater. 400(3), 196–204 (2010)CrossRefGoogle Scholar
  12. 12.
    H.M. Chung, T.F. Kassner, Pseudobinary zircaloy-oxygen phase diagram. J. Nucl. Mater. 84(1), 327–339 (1979)CrossRefGoogle Scholar
  13. 13.
    N. Dupin, I. Ansara, C. Servant, C. Toffolon, C. Lemaignan, J.C. Brachet, A thermodynamic database for zirconium alloys. J. Nucl. Mater. 275(3), 287–295 (1999)CrossRefGoogle Scholar
  14. 14.
    M.W. Mallett, M.W. Albrecht, P.R. Wilson, The diffusion of oxygen in alpha and beta zircaloy 2 and zircaloy 3 at high temperatures. J. Electrochem. Soc. 106(3), 181–184 (1959)CrossRefGoogle Scholar
  15. 15.
    I.G. Ritchie, A. Atrens, The diffusion of oxygen in alpha-zirconium. J. Nucl. Mater. 67(3), 254–264 (1977)CrossRefGoogle Scholar
  16. 16.
    R.E. Pawel, R. Perkins, R.A. McKee, J.V. Cathcart, G. Yurek, R. Druschel, Diffusion of oxygen in beta-zircaloy and the high temperature zircaloy-steam reaction. Zirconium Nucl. Ind., 119–133 (1977)Google Scholar
  17. 17.
    R.E. Pawel, J.V. Cathcart, R.A. McKee, The kinetics of oxidation of zircaloy-4 in steam at high temperatures. J. Electrochem. Soc. 126(7), 1105–1111 (1979)CrossRefGoogle Scholar
  18. 18.
    J.C. Brachet, V. Vandenberghe-Maillot, L. Portier, D. Gilbon, A. Lesbros, N. Waeckel, J.-P. Mardon, Hydrogen content, preoxidation and cooling scenario effects on post-quench microstructure and mechanical properties of zircaloy-4 and M5 alloys in LOCA conditions. J. ASTM Int. 5(5), 91–118 (2008)CrossRefGoogle Scholar
  19. 19.
    R.L. Williamson, J.D. Hales, S.R. Novascone, M.R. Tonks, D.R. Gaston, C.J. Permann, D. Andrs, R.C. Martineau, Multidimensional multiphysics simulation of nuclear fuel behavior. J. Nucl. Mater. 423(13), 149–163 (2012)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Engineering PhysicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations