Advertisement

Cluster Dynamics Model for the Hydride Precipitation Kinetics in Zirconium Cladding

  • Donghua XuEmail author
  • Hang Xiao
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Hydride precipitation in zirconium cladding is known to cause severe loss of toughness and greatly increase the risk of mechanical failure and fuel leakage. Modeling hydride formation kinetics is critical to the safety assessment of the fuel-cladding system and the entire reactor system. Existing reduced order models do not provide such details as number density and size distribution of hydride precipitates. We have recently developed a cross-scale cluster dynamics model with increased physical details and enhanced predictive capability for the hydride formation kinetics in zirconium. Our model takes information from atomistic simulations, such as migration energy of interstitial hydrogen and formation/binding energy of hydride embryos/clusters, as input, and establishes and solves a system of rate equations that describe the evolution of concentrations of freely migrating hydrogen as well as sessile hydride clusters of all different sizes. Used here to simulate an in situ hydride growth experiment on a TEM, our model is able to reproduce the linear growth behavior of pre-existing hydrides under hydrogen ion implantation and provide possible explanations for the estimated growth rate.

Keywords

Precipitation kinetics Cluster dynamics modeling Zirconium cladding Hydrogen 

Notes

Acknowledgements

D. Xu acknowledges support from the DoE CASL (Consortium for Advanced Simulation of Light water reactors) program under the subcontracts UT-B 4000139375 and UT-B 4000154162 and new faculty startup fund from Oregon State University.

References

  1. 1.
    G.P. Marino, Nucl. Sci. Eng. 49, 93 (1972)CrossRefGoogle Scholar
  2. 2.
    C.F. Bilsby, J. Nucl. Mater. 68, 1 (1977)CrossRefGoogle Scholar
  3. 3.
    B.F. Kammenzind, D.G. Franklin, H.R. Peters, W.J. Duffin, in The Nuclear Industry: 11th International Symposium, ed. by E.R. Bradley, G.P. Sabol, ASTM STP 1295, (American Society for Testing and Materials, 1996), p. 338Google Scholar
  4. 4.
    M.S. Veshchunov, V.E. Shestak, V.D. Ozrin, J. Nucl. Mater. 472, 65 (2016)CrossRefGoogle Scholar
  5. 5.
    A. Aryanfar, J. Thomas, A. Van Der Ven, D.H. Xu, M. Youssef, J. Yang, B. Yildiz, J. Marian, JOM 68, 2900 (2016)CrossRefGoogle Scholar
  6. 6.
    D.H. Xu, A. Certain, H.J.L. Voigt, T. Allen, B.D. Wirth, J. Chem. Phys. 145, 104704 (2016)CrossRefGoogle Scholar
  7. 7.
    D.H. Xu, G. VanCoevering, B.D. Wirth, Comput. Mater. Sci. 114, 47 (2016)CrossRefGoogle Scholar
  8. 8.
    D.H. Xu, B.D. Wirth, M.M. Li, M.A. Kirk, Appl. Phys. Lett. 101, 101905 (2012)CrossRefGoogle Scholar
  9. 9.
    D.H. Xu, B.D. Wirth, M.M. Li, M.A. Kirk, Acta Mater. 60, 4286 (2012)CrossRefGoogle Scholar
  10. 10.
    D.H. Xu, B.D. Wirth, J. Nucl. Mater. 403, 184 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Shinohara, H. Abe, T. Iwai, N. Sekimura, T. Kido, H. Yamamoto, T. Taguchi, J. Nucl. Sci. Tech. 46, 564 (2009)CrossRefGoogle Scholar
  12. 12.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1984)Google Scholar
  13. 13.
    M. Christensen, W. Wolf, C. Freeman et al., J. Phys.: Condens. Matter 27, 025402 (2015)Google Scholar
  14. 14.
    D. R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements (ERDA, 1976)Google Scholar
  15. 15.
    A. Rafiei, M. Bollhofer, Numer. Math. 118, 247 (2011)CrossRefGoogle Scholar
  16. 16.
    G. Karypis, V. Kumar, SIAM J. Sci. Comput. 20, 359 (1999)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Mechanical, Industrial and Manufacturing EngineeringOregon State UniversityCorvallisUSA
  2. 2.Department of Nuclear EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations