Advertisement

Multiple Cracks Interactions in Stress Corrosion Cracking: In Situ Observation by Digital Image Correlation and Phase Field Modeling

  • J. BolivarEmail author
  • T.T. Nguyen
  • Y. Shi
  • M. FregoneseEmail author
  • J. Réthoré
  • J. Adrien
  • A. King
  • J.Y. Buffiere
  • N. Huin
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Interactions between multiple stress corrosion cracks (M-SCC) have a major influence on crack growth but are underestimated in models devoted to the evaluation of the lifetime of industrial components. In this study, the growth and interactions between multiple cracks on a sensitized Alloy 600 in a 0.01 M tetrathionate solution, were studied by digital image correlation (DIC). Cracks exceeding 55 µm in length and 0.45 µm in opening were successfully detected by DIC. The emergence and intensification of interactions modify the growth of the crack colony which evolves from a mostly surface crack propagation (lack of interactions) to in-depth propagation controlled by crack shielding. A multiphysics phase field model was jointly developed and successfully implemented to simulate intergranular M-SCC. It coupled a robust algorithm based on brittle fracture and a diffusion model. The resulting modeling allowed simulating the interactions between cracks and the shielding effects observed experimentally. Finally, 3-D quantification of crack propagation was performed by micro-tomography and digital volume correlation (DVC).

Keywords

Stress corrosion cracking Digital image correlation Phase-field modeling Micro-computed tomography 

Notes

Acknowledgements

The authors would like to acknowledge the National French Research Agency (ANR) for its financial support under contract MATETPRO ANR-12-RMNP-0020 (ECCOFIC project). The authors are also grateful for the beam time awarded by synchrotron SOLEIL on the Psiche beamline (20140951 and 20150856 accepted proposals) and acknowledge warmly the technical and scientific support they benefited. The authors would like also to thank their partners: Institut de la Corrosion, Andra, MISTRAS Group and Pierre Combrade for their participation in the fruitful discussions during this work.

References

  1. 1.
    J. Hickling, Status review of initiation of environmentally assisted cracking and short crack growth. EPRI Palo Alto CA Technical report 1011788. (2005)Google Scholar
  2. 2.
    R.N. Parkins, Strain rate effects in stress corrosion cracking. Corrosion 46(3), 178 (1990)CrossRefGoogle Scholar
  3. 3.
    R.N. Parkins, P.M. Singh, Stress corrosion crack coalescence. Corrosion 46(6), 485–499 (1990)CrossRefGoogle Scholar
  4. 4.
    R.N. Parkins, E. Belhimer, W.K.J. Blanchard, Stress corrosion cracking characteristics of a range of pipeline steels in carbonate-bicarbonate solution. Corrosion 49(12), 951–966 (1993)CrossRefGoogle Scholar
  5. 5.
    Y.-Z. Wang, K. Ebtehaj, D. Hardie, R.N. Parkins, The behaviour of multiple stress corrosion cracks in a Mn–Cr and Ni–Cr–Mo–V Steel-I-Metallography. Corros. Sci. 37(11), 1651–1675 (1995)CrossRefGoogle Scholar
  6. 6.
    Y.-Z. Wang, K. Ebtehaj, D. Hardie, R.N. Parkins, The behaviour of multiple stress corrosion cracks in a Mn–Cr and a Ni–Cr–Mo–V steel: II—Statistical characterisation. Corros. Sci. 37(11), 1677–1703 (1995)CrossRefGoogle Scholar
  7. 7.
    Y.-Z. Wang, K. Ebtehaj, D. Hardie, R.N. Parkins, The behaviour of multiple stress corrosion cracks in a Mn–Cr and Ni–Cr–Mo–V Steel-III-Monte Carlo simulation. Corros. Sci. 37(11), 1705–1720 (1995)CrossRefGoogle Scholar
  8. 8.
    Y. Ochi, A. Ishii, S.K. Sasaki, An experimental and statistical investigation of surface fatigue crack initiation and growth. Fatigue Fract. Eng. Mater. Struct. 8(4), 327–339 (1985)CrossRefGoogle Scholar
  9. 9.
    O. Calonne, L. Fournier, P. Combrade, P.M. Scott, P.Chou, Experimental study of short crack coalescence in nickel-base alloys in PWR primary water. In Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, (2011), pp. 1647–1664Google Scholar
  10. 10.
    P.J.E. Forsyth, A unified description of micro and macroscopic fatigue crack behaviour. Int. J. Fatigue 5(1), 3–14 (1983)CrossRefGoogle Scholar
  11. 11.
    H. Schreier, J.-J. Orteu, M.A. Sutton, Image Correlation for Shape, Motion and Deformation Measurements (Springer, US, Boston, MA, 2009)CrossRefGoogle Scholar
  12. 12.
    T.C. Chu, W.F. Ranson, M.A. Sutton, Applications of digital-image-correlation techniques to. Exp. Mech. 25(3), 232–244 (1985)CrossRefGoogle Scholar
  13. 13.
    D.J. Wu, W.G. Mao, Y.C. Zhou, C. Lu, Digital image correlation approach to cracking and decohesion in a brittle coating/ductile substrate system. Appl. Surf. Sci. 257(14), 6040–6043 (2011)CrossRefGoogle Scholar
  14. 14.
    J.R. Yates, M. Zanganeh, Y.H. Tai, Quantifying crack tip displacement fields with DIC. Eng. Fract. Mech. 77(11), 2063–2076 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Quinta Da Fonseca, P.M. Mummery, P.J. Withers, Full-field strain mapping by optical correlation of micrographs acquired during deformation. J. Microsc. 218(1), 9–21 (2005)CrossRefGoogle Scholar
  16. 16.
    B. Pan, K. Qian, H. Xie, A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20(6), 062001 (2009)CrossRefGoogle Scholar
  17. 17.
    G. Crammond, S.W. Boyd, J.M. Dulieu-Barton, Speckle pattern quality assessment for digital image correlation. Opt. Lasers Eng. 51(12), 1368–1378 (2013)CrossRefGoogle Scholar
  18. 18.
    J.S. Lyons, J. Liu, M.A. Sutton, High-temperature deformation measurements using digital-image correlation. Exp. Mech. 36(1), 64–70 (1996)CrossRefGoogle Scholar
  19. 19.
    J. Li, A. Lau, A.S.L. Fok, Application of digital image correlation to full-field measurement of shrinkage strain of dental composites. J. Zhejiang Univ. Sci. A 14(1), 1–10 (2013)CrossRefGoogle Scholar
  20. 20.
    A.B. Cook, J. Duff, N. Stevens, S. Lyon, A. Sherry, J. Marrow, Preliminary evaluation of digital image correlation for in-situ observation of low temperature atmospheric-induced chloride stress corrosion cracking in austenitic stainless steels. ECS Trans. 25(37), 119–132 (2010)CrossRefGoogle Scholar
  21. 21.
    J.A. Duff, T.J. Marrow, In-situ observations of intergranular stress corrosion cracking. In ASME 2008 Pressure Vessels and Piping Conference, 2008, pp. 847–854, 2008Google Scholar
  22. 22.
    J. Kovac, C. Alaux, T.J. Marrow, E. Govekar, A. Legat, Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel. Corros. Sci. 52(6), 2015–2025 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Stratulat, J.A. Duff, T.J. Marrow, Grain boundary structure and intergranular stress corrosion crack initiation in high temperature water of a thermally sensitised austenitic stainless steel, observed in situ. Corros. Sci. 85, 428–435 (2014)CrossRefGoogle Scholar
  24. 24.
    J.A. Duff, T.J. Marrow, In situ observation of short fatigue crack propagation in oxygenated water at elevated temperature and pressure. Corros. Sci. 68, 34–43 (2013)CrossRefGoogle Scholar
  25. 25.
    B.K. Bay, Methods and applications of digital volume correlation. J. Strain Anal. Eng. Des. 43(8), 745–760 (2008)CrossRefGoogle Scholar
  26. 26.
    J. Lachambre, J. Réthoré, A. Weck, J.-Y. Buffiere, Extraction of stress intensity factors for 3D small fatigue cracks using digital volume correlation and X-ray tomography. Int. J. Fatigue 71, 3–10 (2015)CrossRefGoogle Scholar
  27. 27.
    N. Limodin et al., Influence of closure on the 3D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3D volume correlation. Acta Mater. 58(8), 2957–2967 (2010)CrossRefGoogle Scholar
  28. 28.
    A. King et al., Tomography and imaging at the PSICHE beam line of the SOLEIL synchrotron. Rev. Sci. Instrum. 87(9), 093704 (2016)CrossRefGoogle Scholar
  29. 29.
    L. Salvo et al., X-ray micro-tomography an attractive characterisation technique in materials science. Nucl. Instrum. Methods Phys Res. Sect. B Beam Interact. Mater. At. 200, 273–286 (2003)CrossRefGoogle Scholar
  30. 30.
    H. Toda et al., Assessment of the fatigue crack closure phenomenon in damage-tolerant aluminium alloy by in-situ high-resolution synchrotron X-ray microtomography. Philos. Mag. 83(21), 2429–2448 (2003)CrossRefGoogle Scholar
  31. 31.
    P. Cloetens et al., Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J. Appl. Phys. 81(9), 5878–5886 (1997)CrossRefGoogle Scholar
  32. 32.
    J. Bolivar, M. Fregonèse, J. Rethoré, C. Duret-Thual, P. Combrade, Evaluation of multiple stress corrosion crack interactions by in-situ Digital Image Correlation, Corrosion Science (2017).  https://doi.org/10.1016/j.corsci.2017.09.001 CrossRefGoogle Scholar
  33. 33.
    J.E. Hack, G.R. Leverant, On the prediction of the surface crack opening displacement of a part through crack. Int. J. Fract. 16(1), R15–R18 (1980)CrossRefGoogle Scholar
  34. 34.
    T.T. Nguyen, J. Yvonnet, Q.-Z. Zhu, M. Bornert, C. Chateau, A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng. Fract. Mech. 139, 18–39 (2015)CrossRefGoogle Scholar
  35. 35.
    T.-T. Nguyen, J. Bolivar, J. Réthoré, M.-C. Baietto, M. Fregonese, A phase field method for modeling stress corrosion crack propagation in a nickel base alloy. Int. J. Solids Struct. 112, 65–82 (2017)CrossRefGoogle Scholar
  36. 36.
    T.J. Marrow et al., High-resolution, in-situ, tomographic observations of stress corrosion cracking (Elsevier, New York, 2005)Google Scholar
  37. 37.
    L.K. Zhu, Y. Yan, J.X. Li, L.J. Qiao, A.A. Volinsky, Stress corrosion cracking under low stress: continuous or discontinuous cracks? Corros. Sci. 80, 350–358 (2014)CrossRefGoogle Scholar
  38. 38.
    L.J. Qiao, K.W. Gao, A.A. Volinsky, X.Y. Li, Discontinuous surface cracks during stress corrosion cracking of stainless steel single crystal. Corros. Sci. 53(11), 3509–3514 (2011)CrossRefGoogle Scholar
  39. 39.
    T.L. Burnett, N.J.H. Holroyd, G.M. Scamans, X. Zhou, G.E. Thompson, P.J. Withers, The role of crack branching in stress corrosion cracking of aluminium alloys. Corros. Rev. 33(6), (2015)Google Scholar
  40. 40.
    P.J. Withers, Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 373(2036), 20130157 (2015)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • J. Bolivar
    • 1
    Email author
  • T.T. Nguyen
    • 2
  • Y. Shi
    • 1
  • M. Fregonese
    • 1
    Email author
  • J. Réthoré
    • 2
  • J. Adrien
    • 1
  • A. King
    • 3
  • J.Y. Buffiere
    • 1
  • N. Huin
    • 4
  1. 1.Université de LyonVilleurbanne CedexFrance
  2. 2.Université de Lyon, INSA de LyonVilleurbanne CedexFrance
  3. 3.Synchrotron SOLEILSaint-AubinFrance
  4. 4.AREVA NP, Centre TechniqueLe CreusotFrance

Personalised recommendations