Advertisement

Stabilization of Deterministic Control Systems Under Random Sampling: Overview and Recent Developments

  • Aneel Tanwani
  • Debasish Chatterjee
  • Daniel Liberzon
Chapter
Part of the Systems & Control: Foundations & Applications book series (SCFA)

Abstract

This chapter addresses the problem of stabilizing continuous-time deterministic control systems via a sample-and-hold scheme under random sampling. The sampling process is assumed to be a Poisson counter, and the open-loop system is assumed to be stabilizable in an appropriate sense. Starting from as early as mid-1950s, when this problem was studied in the Ph.D. dissertation of R.E. Kalman, we provide a historical account of several works that have been published thereafter on this topic. In contrast to the approaches adopted in these works, we use the framework of piecewise deterministic Markov processes to model the closed-loop system, and carry out the stability analysis by computing the extended generator. We demonstrate that for any continuous-time robust feedback stabilizing control law employed in the sample-and-hold scheme, the closed-loop system is asymptotically stable for all large enough intensities of the Poisson process. In the linear case, for increasingly large values of the mean sampling rate, the decay rate of the sampled process increases monotonically and converges to the decay rate of the unsampled system in the limit. In the second part of this article, we fix the sampling rate and address the question of whether there exists a feedback gain which asymptotically stabilizes the system in mean square under the sample-and-hold scheme. For the scalar linear case, the answer is in the affirmative and a constructive formula is provided here. For systems with dimension greater than \(1\) we provide an answer for a restricted class of linear systems, and we leave the solution corresponding to the general case as an open problem.

Notes

Acknowledgements

The authors thank V. S. Borkar, A. Ferrante, J. P. Hespanha, H. Ishii, D. E. Quevedo, A. Teel, G. Yin, and S. Yüksel for helpful discussions and pointers to relevant literature.

References

  1. 1.
    A. Arapostathis, V. S. Borkar, E. Fernandez-Gaucherand, M. K. Ghosh, and S. I. Marcus. Discrete-time controlled Markov processes with average cost criterion: A survey. SIAM Journal on Control and Optimization, 31(2):282–344, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    J. Ackermann. Sampled-Data Control Systems: Analysis and Synthesis, Robust System Design. Springer-Verlag, Heidelberg, 1985.zbMATHCrossRefGoogle Scholar
  3. 3.
    M. Adès, P. E. Caines, and R. P. Malhamé. Stochastic optimal control under Poisson-distributed observations. IEEE Transactions on Automatic Control, 45(1):3–13, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    D. J. Antunes, J. P. Hespanha, and C. J. Silvestre. Volterra integral approach to impulsive renewal systems: Application to networked control. IEEE Transactions on Automatic Control, 57(3):607–619, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    D. Antunes, J. Hespanha, and C. Silvestre. Stability of networked control systems with asynchronous renewal links: An impulsive systems approach. Automatica, 49(2):402–413, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A. A. Agrachev and Yu. L. Sachkov. Control Theory from the Geometric Viewpoint, volume 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2004. Control Theory and Optimization, II.zbMATHCrossRefGoogle Scholar
  7. 7.
    K. J. Åström. Event based control. In Analysis and Design of Nonlinear Control Systems, pages 127–148. Springer, 2008.Google Scholar
  8. 8.
    K. J. Åström and B. M. Wittenmark. Computer Controlled Systems: Theory and Design. Prentice-Hall, Inc. Upper Saddle River, New Jersey, 3rd edition, 1997.Google Scholar
  9. 9.
    T. Başar and P. Bernhard. H\(_\infty \)-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Birkhäuser, Basel, 2nd edition, 2008.Google Scholar
  10. 10.
    T. Chen and B. A. Francis. Optimal Sampled-Data Control Systems. Springer-Verlag, London, 1995.zbMATHCrossRefGoogle Scholar
  11. 11.
    O. L. V. Costa, M. D. Fragoso, and M. G. Todorov. Continuous-Time Markov Jump Linear Systems. Probability and its Applications (New York). Springer, Heidelberg, 2013.Google Scholar
  12. 12.
    C. G. Cassandras and J. Lygeros, editors. Stochastic Hybrid Systems. CRC Press, Taylor & Francis Group, Boca Raton, FL, 2007.Google Scholar
  13. 13.
    M. H. A. Davis. Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. Journal of the Royal Statistical Society. Series B. Methodological, 46(3):353–388, 1984. With discussion.MathSciNetzbMATHGoogle Scholar
  14. 14.
    M. H. A. Davis. Markov Models and Optimization, volume 49 of Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1993.CrossRefGoogle Scholar
  15. 15.
    R. M. Dudley. Real Analysis and Probability, volume 74 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original.Google Scholar
  16. 16.
    E. B. Dynkin. Infinitesimal operators of Markov random processes. Doklady Akademii Nauk SSSR, 105:206–209, 1955.MathSciNetGoogle Scholar
  17. 17.
    E. B. Dynkin. Markov processes and semi-groups of operators. Akademija Nauk SSSR. Teorija Verojatnosteĭ i ee Primenenija, 1:25–37, 1956.Google Scholar
  18. 18.
    G. F. Franklin, J. D. Powell, and M. Workman. Digital Control of Dynamic Systems. Addison-Wesley, Reading, MA, 3rd edition, 1997.Google Scholar
  19. 19.
    W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions, volume 25 of Stochastic Modelling and Applied Probability. Springer, New York, 2 edition, 2006.Google Scholar
  20. 20.
    J. P. Hespanha. Modeling and analysis of networked control systems using stochastic hybrid systems. Annual Reviews in Control, 38(2):155–170, 2014.CrossRefGoogle Scholar
  21. 21.
    R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2nd edition, 2013.Google Scholar
  22. 22.
    W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada. An introduction to event-triggered and self-triggered control. In Proc. 51st IEEE Conf. Decision & Control, pages 3270–3285, 2012.Google Scholar
  23. 23.
    J. P. Hespanha and A. R. Teel. Stochastic impulsive systems driven by renewal processes. In Proc. 17th International Symposium on Mathematical Theory of Networked Systems, pages 606–618. 2006.Google Scholar
  24. 24.
    R. Kalman. Analysis and synthesis of linear systems operating on randomly sampled data. PhD thesis, Department of Electrical Engineering, Columbia University, New York, USA, 1957.Google Scholar
  25. 25.
    R. Khasminskii. Stochastic Stability of Differential Equations, volume 66 of Stochastic Modelling and Applied Probability. Springer, Heidelberg, 2nd edition, 2012. With contributions by G. N. Milstein and M. B. Nevelson.zbMATHCrossRefGoogle Scholar
  26. 26.
    F. Kozin. A survey of stability of stochastic systems. Automatica, 5(1):95–112, 1969.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    H. Kushner and L. Tobias. On the stability of randomly sampled systems. IEEE Transactions on Automatic Control, 14(4):319–324, 1969.MathSciNetCrossRefGoogle Scholar
  28. 28.
    H. J. Kushner. Stochastic Stability and Control. Mathematics in Science and Engineering, Vol. 33. Academic Press, New York-London, 1967.Google Scholar
  29. 29.
    O. Leneman. Random sampling of random processes: Mean-square behavior of a first order closed-loop system. IEEE Transactions on Automatic Control, 13(4):429–432, 1968.CrossRefGoogle Scholar
  30. 30.
    D. Liberzon, D. Nešić, and A. R. Teel. Lyapunov-based small-gain theorems for hybrid systems. IEEE Transactions on Automatic Control, 59(6):1395–1410, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    L. Montestruque and P. Antsaklis. Stability of model-based networked control systems with time-varying transmission times. IEEE Transactions on Automatic Control, 49(9):1562–1572, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    A. S. Matveev and A. V. Savkin. The problem of state estimation via asynchronous communication channels with irregular transmission times. IEEE Transactions on Automatic Control, 48(4):670–676, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    A. S. Matveev and A. V. Savkin. Estimation and Control over Communication Networks. Birkhauser, Boston, MA, 2009.zbMATHGoogle Scholar
  34. 34.
    S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge University Press, Cambridge, 2nd edition, 2009. With a prologue by Peter W. Glynn.Google Scholar
  35. 35.
    D. Nešić and L. Grüne. Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation. Automatica, 41(7):1143–1156, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    D. Nešić and A. R. Teel. Input–output stability properties of networked control systems. IEEE Transactions on Automatic Control, 49(10):1650–1667, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    D. Nešić, A. R. Teel, and P. V. Kokotović. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Systems & Control Letters, 38(4):259–270, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    D. E. Quevedo, V. Gupta, W. J. Ma, and S. Yüksel. Stochastic stability of event-triggered anytime control. IEEE Transactions on Automatic Control, 59(12):3373–3379, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Y. Suhov and M. Kelbert. Probability and Statistics by Example, vol II; Markov Chains: A Primer in Random Processes and their Applications. Cambridge University Press, Cambridge, 2008.Google Scholar
  40. 40.
    E. D. Sontag. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 34(4):435–443, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry. Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control, 49(9):1453–1464, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control, 52(9):1680–1685, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    R. Tempo, G. Calafiore, and F. Dabbene. Randomized Algorithms for Analysis and Control of Uncertain Systems. Springer, London, 2nd edition, 2012.zbMATHGoogle Scholar
  44. 44.
    A. R. Teel, A. Subbaraman, and A. Sferlazza. Stability analysis for stochastic hybrid systems: A survey. Automatica, 50:2435–2456, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    A. Tanwani and A. R. Teel. Stabilization with event-driven controllers over a digital communication channel with random transmissions. In Proc. 56th IEEE Conference on Decision and Control, pages 6063–6068. 2017.Google Scholar
  46. 46.
    G. C. Walsh, O. Beldiman, and L. G. Bushnell. Asymptotic behavior of nonlinear networked control systems. IEEE Transactions on Automatic Control, 46(7):1094–1097, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    S. Yüksel and T. Başar. Stochastic Networked Control Systems, volume 10. Springer, New York, NY, 2013.zbMATHCrossRefGoogle Scholar
  48. 48.
    F. Zhang. Matrix Theory. Universitext. Springer, New York, 2nd edition, 2011. Basic results and techniques.CrossRefGoogle Scholar
  49. 49.
    P. Zhao, L. Y. Wang, and G. Yin. Controllability and adaptation of linear time-invariant systems under irregular and Markovian sampling. Automatica, 63:92–100, 2016.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Aneel Tanwani
    • 1
  • Debasish Chatterjee
    • 2
  • Daniel Liberzon
    • 3
  1. 1.LAAS-CNRSUniversity of ToulouseToulouseFrance
  2. 2.Systems and Control EngineeringIIT BombayMumbaiIndia
  3. 3.Coordinated Science Laboratory, Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations