Cooperative Resilient Estimation of Uncertain Systems Subjected to a Biasing Interference

  • Valery Ugrinovskii
Part of the Systems & Control: Foundations & Applications book series (SCFA)


The chapter revisits the recent methodology of distributed robust filtering using the \(H_\infty \) filtering approach. It summarizes some recent results on the analysis and design of networks of robust filters, which cooperate to produce high-fidelity estimates for uncertain plants. These results are applied to the problem of detecting and neutralizing biasing attacks on distributed observer networks, to obtain algorithms for cooperative detection of malicious biasing behaviour of compromised network nodes.



This chapter is dedicated to the memory of Roberto Tempo whose friendship and support will never go unappreciated. The work was supported in part by the Australian Research Council and the University of New South Wales.


  1. 1.
    B. Açıkmeşe, M. Mandić, and J.L. Speyer. Decentralized observers with consensus filters for distributed discrete-time linear systems. Automatica, 50(4):1037–1052, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    T. Başar and P. Bernhard. \( {H}^\infty \)-optimal control and related minimax design problems: a dynamic game approach. Birkhäuser, Boston, 2nd edition, 1995.zbMATHGoogle Scholar
  3. 3.
    G. Battistelli and L. Chisci. Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability. Automatica, 50(3):707–718, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    R. Carli, A. Chiuso, L. Schenato, and S. Zampieri. Distributed Kalman filtering based on consensus strategies. IEEE Journal on Selected Areas in Communications, 26(4):622–633, 2008.CrossRefGoogle Scholar
  5. 5.
    G. Dán and H. Sandberg. Stealth attacks and protection schemes for state estimators in power systems. In First IEEE International Conference on Smart Grid Communications (SmartGridComm), pages 214–219, 2010.Google Scholar
  6. 6.
    C. E. de Souza, D. Coutinho, and M. Kinnaert. Mean square state estimation for sensor networks. Automatica, 72:108–114, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    M. Deghat, V. Ugrinovskii, I. Shames, and C. Langbort. Detection of biasing attacks on distributed estimation networks. In 55th IEEE Conference on Decision and Control, Las Vegas, NV, 2016.Google Scholar
  8. 8.
    F. Dorfler, F. Pasqualetti, and F. Bullo. Continuous-time distributed observers with discrete communication. IEEE Journal of Selected Topics in Signal Processing, 7(2):296–304, 2013.CrossRefGoogle Scholar
  9. 9.
    Z. Guo, D. Shi, K.H. Johansson, and L. Shi. Optimal linear cyber-attack on remote state estimation. IEEE Transactions on Control of Network Systems, 4(1):4–13, March 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    D. Han, Y. Mo, and L. Xie. Robust state estimation against sparse integrity attacks. arXiv preprint arXiv:1601.04180, 2016.
  11. 11.
    M. Kamgarpour and C. Tomlin. Convergence properties of a decentralized Kalman filter. In 47th IEEE Conference on Decision and Control, pages 3205–3210, 2008.Google Scholar
  12. 12.
    M.S. Mahmoud and H.M. Khalid. Distributed Kalman filtering: a bibliographic review. IET Control Theory and Applications, 7(4):483–501, 2013.MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Marelli, M. Zamani, M. Fu, and B. Ninness. Distributed Kalman filter in a network of linear systems. Systems and Control Letters, 116:71–77, 2018.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    N. Matni, Y.P. Leong, Y.S. Wang, S. You, M.B. Horowitz, and J.C. Doyle. Resilience in large scale distributed systems. Procedia Computer Science, 28:285–293, 2014.CrossRefGoogle Scholar
  15. 15.
    P. Millán, L. Orihuela, C. Vivas, F.R. Rubio, D.V. Dimarogonas, and K.H. Johansson. Sensor-network-based robust distributed control and estimation. Control Engineering Practice, 21(9):1238–1249, 2013.CrossRefGoogle Scholar
  16. 16.
    A. Mitra and S. Sundaram. Distributed observers for LTI systems. IEEE Transactions on Automatic Control, 63(12), 2018.zbMATHCrossRefGoogle Scholar
  17. 17.
    Y. Mo, T.H.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and B. Sinopoli. Cyber-physical security of a smart grid infrastructure. Proceedings of the IEEE, 100(1):195–209, 2012.CrossRefGoogle Scholar
  18. 18.
    T.R. Nelson and R.A. Freeman. Decentralized \({H}_\infty \) filtering in a multi-agent system. In American Control Conference, pages 5755–5760, St. Louis, MO, 2009.Google Scholar
  19. 19.
    R. Olfati-Saber. Distributed Kalman filter with embedded consensus filters. In 44th IEEE Conference on Decision and Control and 2005 European Control Conference, pages 8179–8184, 2005.Google Scholar
  20. 20.
    R. Olfati-Saber. Distributed Kalman filtering for sensor networks. In 46th IEEE Conference on Decision and Control, pages 5492–5498, 2007.Google Scholar
  21. 21.
    L. Orihuela, P. Millán, C. Vivas, and F.R. Rubio. Reduced-order \({H}_2/{H}_\infty \) distributed observer for sensor networks. International Journal of Control, 86(10):1870–1879, 2013.MathSciNetzbMATHGoogle Scholar
  22. 22.
    S. Park and N. C. Martins. Design of distributed LTI observers for state omniscience. IEEE Transactions on Automatic Control, 62(2):561–576, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    F. Pasqualetti, F. Dorfler, and F. Bullo. Attack detection and identification in cyber-physical systems. IEEE Transactions on Automatic Control, 58(11):2715–2729, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    F. Pasqualetti, A. Bicchi, and F. Bullo. Consensus computation in unreliable networks: A system theoretic approach. IEEE Transactions on Automatic Control, 57:90–104, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    B.S. Rao and H.F. Durrant-Whyte. Fully decentralised algorithm for multisensor Kalman filtering. Control Theory and Applications, IEE Proceedings D, 138(5):413–420, Sep 1991.CrossRefGoogle Scholar
  26. 26.
    I.D. Schizas, G.B. Giannakis, S.I. Roumeliotis, and A. Ribeiro. Consensus in ad hoc WSNs with noisy links—Part II: Distributed estimation and smoothing of random signals. IEEE Transactions on Signal Processing, 56(4):1650–1666, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    B. Shen, Z. Wang, and Y.S. Hung. Distributed \({H}_\infty \)-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case. Automatica, 46(10):1682–1688, 2010.MathSciNetCrossRefGoogle Scholar
  28. 28.
    B. Shen, Z. Wang, and X. Liu. A stochastic sampled-data approach to distributed \({H}_\infty \) filtering in sensor networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(9):2237–2246, 2011.MathSciNetGoogle Scholar
  29. 29.
    R. Smith and F. Hadaegh. Closed-loop dynamics of cooperative vehicle formations with parallel estimators and communication. IEEE Transactions on Automatic Control, 52(8):1404–1414, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    R.S. Smith. Covert misappropriation of networked control systems: Presenting a feedback structure. IEEE Control Systems, 35(1):82–92, 2015.MathSciNetCrossRefGoogle Scholar
  31. 31.
    M.V. Subbotin and R.S. Smith. Design of distributed decentralized estimators for formations with fixed and stochastic communication topologies. Automatica, 45(11):2491–2501, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    S.L. Sun and Z.L. Deng. Multi-sensor optimal information fusion Kalman filter. Automatica, 40(6):1017–1023, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    A. Teixeira, I. Shames, H. Sandberg, and K.H. Johansson. A secure control framework for resource-limited adversaries. Automatica, 51:135–148, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    V. Ugrinovskii. Distributed robust filtering with \({H}_\infty \) consensus of estimates. Automatica, 47(1):1–13, 2011.MathSciNetzbMATHGoogle Scholar
  35. 35.
    V. Ugrinovskii. Conditions for detectability in distributed consensus-based observer networks. IEEE Transactions on Automatic Control, 58:2659–2664, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    V. Ugrinovskii. Distributed robust estimation over randomly switching networks using \({H}_\infty \) consensus. Automatica, 49(1):160–168, 2013.MathSciNetzbMATHGoogle Scholar
  37. 37.
    V. Ugrinovskii. Gain-scheduled synchronization of parameter varying systems via relative \({H}_\infty \) consensus with application to synchronization of uncertain bilinear systems. Automatica, 50(11):2880–2887, 2014.MathSciNetzbMATHGoogle Scholar
  38. 38.
    V. Ugrinovskii and E. Fridman. A Round-Robin protocol for distributed estimation with \({H}_\infty \) consensus. Syst. Contr. Lett. 69:103–110, 2014.MathSciNetzbMATHGoogle Scholar
  39. 39.
    V. Ugrinovskii and C. Langbort. Distributed \({H}_\infty \) consensus-based estimation of uncertain systems via dissipativity theory. IET Control Theory and Applications, 5(12):1458–1469, 2011.MathSciNetGoogle Scholar
  40. 40.
    J. Wu, L. Li, V. Ugrinovskii, and F. Allgöwer. Distributed filter design for cooperative \({H}_\infty \)-type estimation. In IEEE Multi-Conference on Systems and Control, Sydney, Australia, Sept. 2015.Google Scholar
  41. 41.
    J. Wu, V. Ugrinovskii, and F. Allgöwer. Cooperative estimation and robust synchronization of heterogeneous multi-agent systems with coupled measurements. IEEE Transactions on Control of Network Systems, 5(4), 2018.Google Scholar
  42. 42.
    M. Zamani and V. Ugrinovskii. Minimum-energy distributed filtering. In 53rd IEEE Conference on Decision and Control, Los Angeles, CA, 2014.Google Scholar
  43. 43.
    Q. Zhu, L. Bushnell, and T. Basar. Resilient distributed control of multi-agent cyber-physical systems. In D.C. Tarraf, editor, Control of Cyber-Physical Systems, volume 449 of Lecture Notes in Control and Information Sciences, pp. 301–316. Springer, 2013.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Engineering and ITUniversity of New South Wales CanberraCanberraAustralia

Personalised recommendations