Advertisement

Role of Teachers as Facilitators of the Interplay Physics and Mathematics

  • Gesche PospiechEmail author
  • Bat-Sheva Eylon
  • Esther Bagno
  • Yaron Lehavi
Chapter

Abstract

In this chapter the role of teachers in teaching mathematization is discussed. As a basis a model for the pedagogical content knowledge, specifically adapted for the role of mathematics in physics, was developed and validated with an interview study with experienced physics teachers. Different foci of teachers with respect to their teaching strategies are being identified.

References

  1. Al-Omari, W., & Miqdadi, R. (2014). The epistemological perceptions of the relationship between physics and mathematics and its effect on problem-solving among pre-service teachers at Yarmouk university in Jordan. International Education Studies, 7(5), 39–48.CrossRefGoogle Scholar
  2. Ataide, A. R. P. D., & Greca, I. M. (2013). Epistemic views of the relationship between physics and mathematics: Its influence on the approach of undergraduate students to problem solving. Science & Education, 22, 1405–1421.CrossRefGoogle Scholar
  3. Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 25–48). Boston: Springer.CrossRefGoogle Scholar
  4. Başkan, Z., Alev, N., & Karal, I. S. (2010). Physics and mathematics teachers’ ideas about topics that could be related or integrated. Procedia – Social and Behavioral Sciences, 2(2), 1558–1562.CrossRefGoogle Scholar
  5. Bodin, M., & Winberg, M. (2012). Role of beliefs and emotions in numerical problem solving in university physics education. Physical Review Special Topics – Physics Education Research, 8(1), 010108.CrossRefGoogle Scholar
  6. Brahmia, S. M. (2014). Mathematization in introductory physics. Ph.D. Thesis, Rutgers University-Graduate School, New Brunswick.Google Scholar
  7. Carrejo, D. J., & Marshall, J. (2007). What is mathematical modelling? Exploring prospective teachers’ use of experiments to connect mathematics to the study of motion. Mathematics Education Research Journal, 19(1), 45–76.CrossRefGoogle Scholar
  8. Cauet, E., Liepertz, S., Borowski, A., & Fischer, H. E. (2015). Does it matter what we measure? Domain-specific professional knowledge of physics teachers. Schweizerische Zeitschrift für Bildungswissenschaften, 37(3), 462–479.Google Scholar
  9. Etkina, E. (2010). Pedagogical content knowledge and preparation of high school physics teachers. Physical Review Special Topics – Physics Education Research, 6(2), 020110.CrossRefGoogle Scholar
  10. Fazio, C., & Spagnolo, F. (2008). Conceptions on modelling processes in Italian high-school prospective mathematics and physics teachers. South African Journal of Education, 28(4), 469–487.Google Scholar
  11. Freitas, I. M., Jiménez, R., & Mellado, V. (2004). Solving physics problems: The conceptions and practice of an experienced teacher and an inexperienced teacher. Research in Science Education, 34(1), 113–133.CrossRefGoogle Scholar
  12. Gramzow, Y., Riese, J., & Reinhold, P. (2013). Modellierung fachdidaktischen Wissens angehender Physiklehrkräfte- Modelling Prospective Teachers’ knowledge of Physics Education. ZfDN (Zeitschrift für Didaktik der Naturwissenschaften), 19, 7–30.Google Scholar
  13. Khalili, P. (2016). Mathematical needs in the physics classroom. Ph.D thesis, Education: Faculty of Education.Google Scholar
  14. Kirschner, S., Borowski, A., Fischer, H. E., Gess-Newsome, J., & von Aufschnaiter, C. (2016). Developing and evaluating a paper-and-pencil test to assess components of physics teachers’ pedagogical content knowledge. International Journal of Science Education, 38(8), 1343–1372.CrossRefGoogle Scholar
  15. Lehavi, Y., Bagno, E., Eylon, B., Mualem, R., Pospiech, G., Böhm, U., & others (2015). Towards a PCK of physics and mathematics interplay. In C. Fazio, S. Mineo, & R. Maria (Eds.), The GIREP MPTL 2014 Conference Proceedings (pp. 843–853). Palermo: Università degli Studi di Palermo.Google Scholar
  16. Lehavi, Y., Bagno, E., Eylon, B.-S., Mualem, R., Pospiech, G., Böhm, U., Krey, O., & Karam, R. (2017). Classroom evidence of teachers’ PCK of the interplay of physics and mathematics. In T. Greczylo et al. (Eds.), Key competences in physics teaching and learning (pp. 95–104). Cham: Springer.CrossRefGoogle Scholar
  17. Loughran, J., Berry, A., & Mulhall, P. (2012). Portraying PCK. In J. Loughran et al. (Eds.), Understanding and developing science teachers’ pedagogical content knowledge (pp. 15–23). Dordrecht: Springer.CrossRefGoogle Scholar
  18. Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Heidelberg: Springer.Google Scholar
  19. Mulhall, P., & Gunstone, R. (2007). Views about physics held by physics teachers with differing approaches to teaching physics. Research in Science Education, 38(4), 435–462.CrossRefGoogle Scholar
  20. Pietrocola, M. (2008). Mathematics as structural language of physical thought. In M. Vicentini & E. Sassi (Eds.), Connecting research in physics education with teacher education. ICPE – Book (Vol. 2). New Delhi: International Commission on Physics Education.Google Scholar
  21. Riese, J. (2010). Empirische Erkenntnisse zur Wirksamkeit der universitären Lehrerbildung – Indizien für notwendige Veränderungen der fachlichen Ausbildung von Physiklehrkräften. PhyDid A-Physik und Didakt. Schule und Hochschule, 9(1), 25–33.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gesche Pospiech
    • 1
    Email author
  • Bat-Sheva Eylon
    • 2
  • Esther Bagno
    • 2
  • Yaron Lehavi
    • 2
  1. 1.Technische Universitt DresdenDresdenGermany
  2. 2.The Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations