Skip to main content

Standardized Turmeric and Curcumin

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine

Abstract

Turmeric root is an ancient Ayurvedic herb, and it is used as a spice, and in very low doses, it may modulate immune-inflammatory diseases of the gut, joints, brain, and body in turmeric-consuming part of the world. Turmeric contains more than 235 active ingredients including essential oils, curcuminoids (>89), and turmerosaccharides as well as curcuminoid-free ingredients and fiber. These phytochemicals and fiber as well as their metabolites and products of microbial degradation may act in additive or synergistic fashion as a modulator of persistent dysregulated chronic immune inflammation and pain in horses, pets, and people. The limited preclinical data support that low doses of turmeric or its active ingredient (curcumin/curcuminoids) may have modulatory applications in preventing or treating immune-inflammatory diseases of the eyes, brain, joints, and gut in pets and people. The standardized turmeric (ST) is a novel concept; it is based on a recently filled patent. ST may reduce the need for analgesics (opiates), antidepressants, steroids, and anticancer medications. Using the latest drug-targeted delivery and reliable clinical trial strategies, ST may be considered for R&D for the prevention and treatment of OA, dementia, and other age-related diseases of the eyes, brain, gut, and joints in pets and humans. The consumers need to be aware of the adulterations of turmeric and its extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal KA, Tripathi CD, Agarwal BB et al (2011) Efficacy of turmeric (curcumin) in pain and postoperative fatigue after laparoscopic cholecystectomy: a double-blind, randomized placebo-controlled study. Surg Endosc 25(12):3805–3810

    PubMed  Google Scholar 

  • Aggarwal BB, Yuan W, Li S et al (2013) Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: identification of novel components of turmeric. Mol Nutr Food Res 57(9):1529–1542

    CAS  PubMed  Google Scholar 

  • Akuri MC, Barbalho SM, Val RM et al (2017) Reflections about osteoarthritis and Curcuma longa. Pharmacogn Rev 1(21):8–12

    Google Scholar 

  • Alipour A, Elte JW, van Zaanen HC et al (2007) Postprandial inflammation and endothelial dysfunction. Biochem Soc Trans 35(Pt 3):466–469

    CAS  PubMed  Google Scholar 

  • Arun N, Nalini N (2002) Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum Nutr 57(1):41–52

    CAS  PubMed  Google Scholar 

  • Ashraf K, Mujeeb M, Ahmad A et al (2015) Determination of curcuminoids in Curcuma longa Linn. by UPLC/Q-TOF–MS: an application in turmeric cultivation. J Chromatogr Sci 53(8):1346–1352

    CAS  PubMed  Google Scholar 

  • Bas M, Tugcu V, Kemahli E et al (2009) Curcumin prevents shock-wave lithotripsy-induced renal injury through inhibition of nuclear factor kappa-B and inducible nitric oxide synthase activity in rats. Urol Res 37(3):159–164

    CAS  PubMed  Google Scholar 

  • Bastaki SMA, Ahmed MMA, Zaabi AA et al (2016) Effect of turmeric on colon histology, body weight, ulcer, IL-23, MPO and glutathione in acetic-acid-induced inflammatory bowel disease in rats. BMC Complement Altern Med 16:72

    PubMed  PubMed Central  Google Scholar 

  • Begum AN, Jones MR, Lim GP et al (2008) Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 326(1):196–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bethapudi B, Murugan S, Illuri R et al (2017) Bioactive turmerosaccharides from Curcuma longa extract (NR-INF-02): potential ameliorating effect on osteoarthritis pain. Pharmacogn Mag 13(Suppl 3):S623–S627

    PubMed  PubMed Central  Google Scholar 

  • Betts JW, Sharili AS, La Ragione RM (2016) In vitro antibacterial activity of curcumin–polymyxin B combinations against multidrug-resistant bacteria associated with traumatic wound infections. J Nat Prod 79(6):1702–1706

    CAS  PubMed  Google Scholar 

  • Bland SD, Venable EB, McPherson JL et al (2017) Effects of liposomal-curcumin on five opportunistic bacterial strains found in the equine hindgut – preliminary study. J Anim Sci Technol 59:15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger GT, Licollari A, Tan A et al (2017) Distribution and metabolism of Lipocurc™ (liposomal curcumin) in dog and human blood cells: species selectivity and pharmacokinetic relevance. Anticancer Res 37(7):3483–3492

    CAS  PubMed  Google Scholar 

  • Bolger GT, Licollari A, Tan A et al (2018) Distribution of curcumin and THC in peripheral blood mononuclear cells isolated from healthy individuals and patients with chronic lymphocytic leukemia. Anticancer Res 38(1):121–130

    CAS  PubMed  Google Scholar 

  • Brumatti LV, Marcuzzi A, Tricarico PM et al (2014) Curcumin and inflammatory Bowel disease: potential and limits of innovative treatments. Molecules 19:21127–21153

    Google Scholar 

  • Cavaleri F (2018) Presenting a new standard drug model for turmeric and its prized extract, curcumin. Int J Inflam 1(15):5023429

    Google Scholar 

  • Chand N (2018) Composition of containing standardized turmeric for reducing inflammation. Provisional Patent Application # 626136994, Jan 4, 2018

    Google Scholar 

  • Cheppudira B, Fowler M, McGhee L et al (2013) Curcumin: a novel therapeutic for burn pain and wound healing. Expert Opin Investig Drugs 22:295–1230

    Google Scholar 

  • Colitti M, Gaspardo B, Della Pria A et al (2012) Transcriptome modification of white blood cells after dietary administration of curcumin and non-steroidal anti-inflammatory drug in osteoarthritic affected dogs. Vet Immunol Immunopathol 147:136–146

    CAS  PubMed  Google Scholar 

  • Das P, Gupta G, Velu V et al (2017) Formation of struvite urinary stones and approaches towards the inhibition – a review. Biomed Pharmacother 96:361–370

    CAS  PubMed  Google Scholar 

  • Del Grossi Moura M, Lopes LC, Biavatti MW et al (2017) Oral herbal medicines marketed in Brazil for the treatment of osteoarthritis: a systematic review and meta- analysis. Phytother Res 31:1676–1685

    PubMed  Google Scholar 

  • Dende C, Meena J, Nagarajan P et al (2017) Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria. Sci Rep 7(1):10062

    PubMed  PubMed Central  Google Scholar 

  • Di Pierro F, Bressan A, Ranaldi D et al (2015) Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study. Eur Rev Med Pharmacol Sci 19:4195–4202

    PubMed  Google Scholar 

  • Dou Y, Luo J, Wu X (2018) Curcumin attenuates collagen-induced inflammatory response through the “gut-brain axis”. J Neuroinflammation 15(1):6

    PubMed  PubMed Central  Google Scholar 

  • Farinacci M, Colitti M, Stefanon B (2009) Modulation of ovine neutrophil function and apoptosis by standardized extracts of Echinacea angustifolia, Butea frondosa and Curcuma longa. Vet Immunol Immunopathol 128(4):366–373

    PubMed  Google Scholar 

  • Fujiwara H (2000) Curcumin inhibits glucose production in isolated mice hepatocytes. Diabetes Res Clin Pract 80:185–190

    Google Scholar 

  • Gaffey A, Campbell J, Porritt K et al (2015) The effects of curcumin on musculoskeletal pain: a systematic review protocol. JBI Database System Rev Implement Rep 13:59–73

    PubMed  Google Scholar 

  • Gera M, Sharma N, Ghosh M et al (2017) Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget 8:66680–66698

    PubMed  PubMed Central  Google Scholar 

  • Ghodasara J, Pawar A, Deshmukh C et al (2010) Inhibitory effect of rutin and curcumin on experimentally-induced calcium oxalate urolithiasis in rats. Pharmacogn Res 2:388–392

    CAS  Google Scholar 

  • Ghosh SS, He H, Wang J et al (2018) Curcumin-mediated regulation of intestinal barrier function: the mechanism underlying its beneficial effects. Tissue Barriers 6(1):e1425085

    PubMed  PubMed Central  Google Scholar 

  • Gopi S, Jacob J, Varma K et al (2017) Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: an open-label parallel-arm study. Phytother Res 31:1883–1891

    CAS  PubMed  Google Scholar 

  • Gopinath H, Karthikeyan K (2018) Turmeric: a condiment, cosmetic and cure. Indian J Dermatol Venereol Leprol 84:16–21

    PubMed  Google Scholar 

  • Gupta SC, Kismali G, Aggarwal BB (2013) Curcumin, a component of turmeric: from farm to pharmacy. Biofactors 39:2–13

    CAS  PubMed  Google Scholar 

  • Gutierres VO, Campos ML, Arcaro CA et al (2015) Curcumin pharmacokinetic and pharmacodynamic evidences in streptozotocin-diabetic rats support the antidiabetic activity to be via metabolite(s). Evid Based Complement Alternat Med 2015:678218

    PubMed  PubMed Central  Google Scholar 

  • Han S, Xu J, Guo X et al (2018) Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin Exp Pharmacol Physiol 45(1):84–93

    CAS  PubMed  Google Scholar 

  • Hanai H, Sugimoto K (2009) Curcumin has bright prospects for the treatment of inflammatory Bowel disease. Curr Pharm Des 15(18):2087–2094

    CAS  PubMed  Google Scholar 

  • Hanai H, Iida T, Takeuchi K et al (2006) Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 4(12):1502–1506

    CAS  PubMed  Google Scholar 

  • Haroyan A, Mukuchyan V, Mkrtchya N et al (2018) Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: a comparative, randomized, double- blind, placebo-controlled study. BMC Complement Altern Med 18(1):7

    PubMed  PubMed Central  Google Scholar 

  • Heaton LE, Davis JK, Rawson ES et al (2017) Selected in-season nutritional strategies to enhance recovery for team sport athletes: a practical overview. Sports Med 47(11):2201–2218

    PubMed  PubMed Central  Google Scholar 

  • Hu X, Huang F, Szymusiak M et al (2016) PLGA-Curcumin attenuates opioid-induced hyperalgesia and inhibits spinal CaMKIIα. PLos One 11:e0146393

    PubMed  PubMed Central  Google Scholar 

  • Innes JF, Fuller CJ, Grover ER et al (2003) Randomized, double- blind, placebo controlled parallel group study of P54FP for the treatment of dogs with osteoarthritis. Vet Rec 152:457–460

    CAS  PubMed  Google Scholar 

  • Javeri I, Chand N (2016) Curcumin. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic Press, Amsterdam, pp 435–445

    Google Scholar 

  • Jeengar MK, Shrivastava S, Mouli Veeravalli SC (2016) Amelioration of FCA induced arthritis on topical application of curcumin in combination with emu oil. Nutrition 32:955–964

    CAS  PubMed  Google Scholar 

  • Jia S, Du Z, Song C et al (2017) Identification and characterization of curcuminoids in turmeric using ultra-high-performance liquid chromatography-quadrupole time of flight tandem mass spectrometry. J Chromatogr A 1521:110–122

    CAS  PubMed  Google Scholar 

  • Jin TR (2018) Curcumin and dietary polyphenol research: beyond drug discovery. Acta Pharmacol Sin 39(5):779–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krausz AE, Adler BL, Cabral V (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 11:195–206

    CAS  PubMed  Google Scholar 

  • Kumar SSD, Houreld NN, Abrahamse H (2018) Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases. Molecules 23(4):835–849

    Google Scholar 

  • Kurup V, Barrios CS, Barrios R et al (2007) Immune response modulation by curcumin in a latex allergy model. Clin Mol Allergy 5(1):1

    PubMed  PubMed Central  Google Scholar 

  • Lang A, Salomon N, Wu JC et al (2015) Curcumin in combination with mesalamine induces remission in patients with mild-to-moderate ulcerative colitis in a randomized controlled trial. Clin Gastroenterol Hepatol 13(8):1444–1449

    CAS  PubMed  Google Scholar 

  • Lim GP, Chu T, Yang F et al (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    CAS  PubMed  Google Scholar 

  • Lin J-A, Chen J-H, Lee Y-W et al (2011) Biphasic effect of curcumin on morphine tolerance: a preliminary evidence from cytokine/chemokine protein array analysis. Evid Based Complement Alternat Med 2011:452153. https://doi.org/10.1093/ecam/neq018

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yin W, Han L et al (2018a) Diarylheptanoid from rhizomes of Curcuma kwangsiensis (DCK) inhibited imiquimod-induced dendritic cells activation and Th1/Th17 differentiation. Int Immunopharmacol 56:339–348

    CAS  PubMed  Google Scholar 

  • Liu X, Machado GC, Eyles JP et al (2018b) Dietary supplements for treating osteoarthritis: a systematic review and meta-analysis. Br J Sports Med 52:167–175

    PubMed  Google Scholar 

  • Lone PA, Ahmed SW, Prasad V et al (2018) Role of turmeric in management of alveolar osteitis (dry socket): a randomized clinical study. J Oral Biol Craniofac Res 8:44–47

    PubMed  Google Scholar 

  • Mantzorou M, Pavlidou E, Vasios G et al (2018) Effects of curcumin consumption on human chronic diseases: a narrative review of the most recent clinical data. Phytother Res 32:957–975. https://doi.org/10.1002/ptr.6037

    Article  CAS  PubMed  Google Scholar 

  • Maradana MR, Thomas R, O’Sullivan BJ (2013) Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res 57:550–1556

    Google Scholar 

  • Matabudul D, Pucaj K, Bolger G et al (2012) Tissue distribution of (Lipocurc™) liposomal curcumin and tetrahydrocurcumin following two- and eight-hour infusions in Beagle Dogs. Anticancer Res 32:4359–4364

    CAS  PubMed  Google Scholar 

  • Mazzanti G, Di Giacomo S (2016) Curcumin and resveratrol in the management of cognitive disorders: what is the clinical evidence? Molecules 21:1243–1270

    PubMed Central  Google Scholar 

  • McCann MJ, Johnston S, Reilly K et al (2014) The effect of turmeric (Curcuma longa) extract on the functionality of the solute carrier protein 22 A4 (SLC22A4) and interleukin-10 (IL-10) variants associated with inflammatory bowel disease. Nutrients 6:4178–4190

    PubMed  PubMed Central  Google Scholar 

  • McCubrey JA, Lertpiriyapong K, Steelman LS et al (2017) Regulation of GSK-3 activity by curcumin, berberine and resveratrol: potential effects on multiple diseases. Adv Biol Reg 65:77–88

    CAS  Google Scholar 

  • McFarlin BK, Venable AS, Henning AL et al (2016) Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clin 5:72–78

    PubMed  PubMed Central  Google Scholar 

  • Mollazadeh H, Cicero AFG, Blesso CN et al (2017) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr:1–13. https://doi.org/10.1080/10408398.2017.1358139

    PubMed  Google Scholar 

  • Motaghinejad M, Bangash MY, Hosseini P (2015) Attenuation of morphine withdrawal syndrome by various dosages of curcumin in comparison with clonidine in mouse: possible mechanism. IJMS 40:125–132

    PubMed  Google Scholar 

  • Murugan S, Bethapudi B, Purusothaman D et al (2017) Anti-arthritic effect of polar extract of Curcuma longa on monosodium iodoacetate induced osteoarthritis in rats. Antiinflamm Antiallergy Agents Med Chem 16(3):193–202

    CAS  PubMed  Google Scholar 

  • Nalli M, Ortar G, Schiano Moriello A et al (2017) Effects of curcumin and curcumin analogues on TRP channels. Fitoterapia 122:126–131

    CAS  PubMed  Google Scholar 

  • Neto FC, Marton LT, de Marqui SV et al (2018) Curcuminoids from Curcuma Longa: new adjuvants for the treatment of Crohn’s disease and ulcerative colitis? Crit Rev Food Sci Nutr 22:1–36

    Google Scholar 

  • Nirumand MC, Hajialyani M, Rahimi R et al (2018) Dietary plants for the prevention and management of kidney stones: preclinical and clinical evidence and molecular mechanisms. Int J Mol Sci 19:765

    PubMed Central  Google Scholar 

  • Ohno M, Nishida A, Sugitani S et al (2017) Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One 12(10):e0185999

    PubMed  PubMed Central  Google Scholar 

  • Peddada KV, Brown A, Verma V et al (2018) Therapeutic potential of curcumin in major retinal pathologies. Int Ophthalmol. https://doi.org/10.1007/s10792-018-0845-y

    PubMed  Google Scholar 

  • Ponnusamy S, Zinjarde S, Bhargava S et al (2012) Discovering Bisdemethoxycurcumin from Curcuma longa rhizome as a potent small molecule inhibitor of human pancreatic α-amylase, a target for type-2 diabetes. Food Chem 135:2638–2642

    CAS  PubMed  Google Scholar 

  • Prasad S, Aggarwal BB (2011) Chapter 13: Turmeric, the golden spice. From traditional medicine to modern medicine. In: Benzie IFF, Wachtel-Galor S (eds) Herbal medicine: biomolecular and clinical aspects. CRC Press, Boca Raton, FL

    Google Scholar 

  • Ramirez BA, Soler A, Carrion-Gutierrez MA et al (2000) An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of human-plasma fibrinogen. Mech Ageing Dev 114(3):207–210

    Google Scholar 

  • Ramkumar M, Rajasankar S, Gobi VV et al (2018) Demethoxycurcumin, a natural derivative of curcumin abrogates rotenone-induced dopamine depletion and motor deficits by its antioxidative and anti-inflammatory properties in Parkinsonian rats. Pharmacogn Mag 14(53):9–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riaz Rajoka MS, Jin M, Haobin Z et al (2018) Impact of dietary compounds on cancer-related gut microbiota and microRNA. Appl Microbiol Biotechnol 102(10):4291–4303

    CAS  PubMed  Google Scholar 

  • Sarker MR, Franks SF (2018) Efficacy of curcumin for age-associated cognitive decline: a narrative review of preclinical and clinical studies. Geroscience 40(2):73–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiborr C, Kocher A, Behnam D et al (2014) The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res 58:516–527

    CAS  PubMed  Google Scholar 

  • Seo HJ, Wang SM, Han C et al (2015) Curcumin as a putative antidepressant. Expert Rev Neurother 15(3):269–280

    CAS  PubMed  Google Scholar 

  • Shehzad A, Qureshi M, Anwar MN et al (2017) Multifunctional curcumin mediate multitherapeutic effects. J Food Sci 82:2006–2015

    CAS  PubMed  Google Scholar 

  • Shen L, Liu L, Ji HF (2017) Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res 61:1361780

    PubMed  PubMed Central  Google Scholar 

  • Shin HS, See HJ, Jung SY et al (2015) Turmeric (Curcuma longa) attenuates food allergy symptoms by regulating type 1/type 2 helper T cells (Th1/Th2) balance in a mouse model of food allergy. J Ethnopharmacol 175:21–29

    CAS  PubMed  Google Scholar 

  • Siard MH, McCurry KE, Adams AA (2016) Effects of polyphenols including curcuminoids, resveratrol, quercetin, pterostilbene, and hydroxypterostilbene on lymphocyte pro-inflammatory cytokine production of senior horses in vitro. Vet Immunol Immunopathol 173:50–59

    CAS  PubMed  Google Scholar 

  • Small GW, Siddarth P, Li Z et al (2017) Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am J Geriatr Psychiatr 26:266–277

    Google Scholar 

  • Sohrabi M, Alahgholi-Hajibehzad M, Mahmoodian ZM et al (2018) Effect of cinnamon and turmeric aqueous extracts on serum interleukin-17F level of high fructose-fed rats. Iran J Immunol 15:38–46

    PubMed  Google Scholar 

  • Su L-Q, Di Wang Y, Chi H-Y (2017) Effect of curcumin on glucose and lipid metabolism, FFAs and TNF-α in serum of type 2 diabetes mellitus rat models. Saudi J Biol Sci 24:1776–1780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subhashini PS, Chauhan S, Kumari S et al (2013) Intranasal curcumin and its evaluation in murine model of asthma. Int Immunopharmacol 17(3):733–743

    CAS  PubMed  Google Scholar 

  • Subhashini PS, Chauhan S, Dash D et al (2016) Intranasal curcumin ameliorates airway inflammation and obstruction by regulating MAPKinase activation (p38, Erk and JNK) and prostaglandin D2 release in murine model of asthma. Int Immunopharmacol 31:200–200

    CAS  PubMed  Google Scholar 

  • Sundaram JR, Poore CP, Sulaimee NHB et al (2017) Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimer’s disease. J Alzheimers Dis 60:1429–1442

    CAS  PubMed  Google Scholar 

  • Suresh D, Srinivasan K (2010) Tissue distribution and elimination of capsaicin, piperine and curcumin following oral intake in rats. Indian J Med Res 131:682–691

    CAS  PubMed  Google Scholar 

  • Tanabe Y, Maeda S, Akazawa N (2015) Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur J Appl Physiol 115(9):1949–1957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L, Zeng K, Shao W et al (2015) Short-term curcumin gavage sensitizes insulin signaling in dexamethasone-treated C57BL/6 mice. J Nutr 145:2300–2307

    CAS  PubMed  Google Scholar 

  • Velusami CC, Richard EJ, Bethapudi B (2018) Polar extract of Curcuma longa protects cartilage homeostasis: possible mechanism of action. Inflammopharmacology 26(5):1233–1243

    CAS  PubMed  Google Scholar 

  • Verma S, Mundkinajeddu D, Agarwal A et al (2017) Effects of turmeric curcuminoids and metformin against central sensitivity to pain in mice. J Traditional and Compl Med 7:145–151

    Google Scholar 

  • Vors C, Couillard C, Paradis ME et al (2018) Supplementation with resveratrol and curcumin does not affect the inflammatory response to a high-fat meal in older adults with abdominal obesity: a randomized, placebo-controlled crossover trial. J Nutr 148:379–388

    PubMed  Google Scholar 

  • Wojcikowski K, Vigar VJ, Oliver CJ (2018) New concepts of chronic pain and the potential role of complementary therapies. Altern Ther Health Med. https://www.ncbi.nlm.nih.gov/pubmed/29428928

  • Xu X, Cai Y, Yu Y (2018) Effects of a novel curcumin derivative on the functions of kidney in streptozotocin-induced type 2 diabetic rats. Inflammopharmacology. https://europepmc.org/abstract/med/29582239

  • Yang JY, Zhong X, Kim SJ et al (2018) Comparative effects of curcumin and tetrahydrocurcumin on dextran sulfate sodium-induced colitis and inflammatory signaling in mice. J Cancer Prev 23(1):18–24

    PubMed  PubMed Central  Google Scholar 

  • Yeon KY, Kim SA, Kim YH et al (2010) Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J Dent Res 89:170–174

    CAS  PubMed  Google Scholar 

  • Zhang DW, Fu M, Gao SH et al (2013) Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med:636053. https://doi.org/10.1155/2013/636053. https://www.hindawi.com/journals/ecam/2013/636053/

    Google Scholar 

  • Zhang Z, Leong DJ, Xu L et al (2016) Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res Ther 18:128–140

    PubMed  PubMed Central  Google Scholar 

  • Zhao M, Zhao M, Fu C et al (2018) Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes. Int J Nanomedicine 13:1601–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhi L, Dong L, Kong D et al (2013) Curcumin acts via transient receptor potential vanilloid-1 receptors to inhibit gut nociception and reverses visceral hyperalgesia. Neurogastroenterol Motil 25(6):e429–e440

    CAS  PubMed  Google Scholar 

  • Zhu Q, Sun Y, Yun Z et al (2014) Antinociceptive effects of curcumin in a rat model of postoperative pain. Sci Rep 4:4932–4936

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chand, N. (2019). Standardized Turmeric and Curcumin. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_1

Download citation

Publish with us

Policies and ethics