Skip to main content

Current Open Surgical Indications for Revascularization in Cerebral Ischemia

  • Chapter
  • First Online:

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 127))

Abstract

Cerebral revascularization was pioneered half a century ago. Gradual improvements in microsurgical instrumentation and training in microsurgical techniques have allowed significant changes that improved outcomes in neurosurgery, extrapolating this knowledge to other neurosurgical diseases (brain tumor, aneurysms, and skull base tumor surgery). But the popularity of cerebral bypass procedures was followed by their decline, given the lack of clear benefit of bypass surgery in chronic cerebrovascular ischemia after the EC-IC bypass studies. Over the last couple of decades, the formidable advance of neuro-endovascular techniques for revascularization has lessened the need for application of open cerebral revascularization procedures, either for flow augmentation or flow replacement. However, there is still a select group of patients with chronic cerebral ischemia, for whom open cerebral revascularization with flow augmentation is the only treatment option available, and this will be the objective of our current review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dente CJ, Feliciano DV. Alexis Carrel (1873-1944) Nobel Laureate, 1912. Arch Surg. 2005;140:609–10.

    Article  Google Scholar 

  2. Yasargil MG, Y Y. Results of microsurgical extra-intracranial arterial bypass in the treatment of cerebral ischemia. Neurosurgery. 1977;1:22–4.

    Article  CAS  Google Scholar 

  3. Lougheed WM, Marshall BM, Hunter M, Michel ER, Sandwith-Smyth H. Common carotid to intracranial carotid bypass venous graft: technical note. J Neurosurg. 1971;34(1):114–8.

    Article  CAS  Google Scholar 

  4. Ausman JI, Nicoloff DM, Chou SN. Posterior fossa revascularization: anastomosis of vertebral artery to PICA with interposed radial artery graft. Surg Neurol. 1978;9(5):281–6.

    CAS  PubMed  Google Scholar 

  5. Sundt TM Jr, Piepgras DG, Marsh WR, Fode NC. Saphenous vein bypass grafts for giant aneurysms and intracranial occlusive disease. J Neurosurg. 1986;65:439–50.

    Article  Google Scholar 

  6. The EC/IC Bypass Study Group. Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med. 1985;313:1191–200.

    Article  Google Scholar 

  7. Sundt TM Jr. Was the International randomized trial of extracranial-intracranial arterial bypass representative of the population at risk? N Engl J Med. 1987;316:814–6.

    Article  Google Scholar 

  8. Powers WJ, Clarke WR, Grubb RL Jr, Videen TO, Adams HP Jr, Derdeyn CP, COSS Investigators. Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: the Carotid Occlusion Surgery Study randomized trial. JAMA. 2011;306:1983–92.

    Article  CAS  Google Scholar 

  9. Langer DJ, D V. Excimer laser-assisted nonocclusive anastomosis. Neurosurg Focus. 2008;24:1–11.

    Article  Google Scholar 

  10. Appireddy R, Zerna C, Menon BK, Goyal M. Endovascular interventions in acute ischemic stroke: recent evidence, current challenges, and future prospects. Curr Atheroscler Rep. 2016;18(7):40.

    Article  Google Scholar 

  11. Sheth SA, Liebeskind DS. Imaging evaluation of collaterals in the brain: physiology and clinical translation. Curr Radiol Rep. 2014;2(1):29.

    Article  Google Scholar 

  12. Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, Powers WJ. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain. 2002;125:595–607.

    Article  Google Scholar 

  13. Lythgoe DJ, Ostergaard L, William SC, Cluckie A, Buxton-Thomas M, Simmons A, Markus HS. Quantitative perfusion imaging in carotid artery stenosis using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Magn Reson Imaging. 2000;18(1):1–11.

    Article  CAS  Google Scholar 

  14. Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF, Narial T, Zaharchuk G, Caille JM, Dousset V, Yonas H. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36(9):e83–99.

    Article  Google Scholar 

  15. Kaneko K, Kuwabara Y, Mihara F, Yoshiura T, Nakagawa M, Tanaka A, Sasaki M, Koga H, Hayashi K, Honda H. Validation of the CBF, CBV, and MTT values by perfusion MRI in chronic occlusive cerebrovascular disease: a comparison with 15O-PET1. Acad Radiol. 2004;11(5):489–97.

    Article  Google Scholar 

  16. Chen A, Shyr MH, Chen TY, Lai HY, Lin CC, Yen PS. Dynamic CT perfusion imaging with acetazolamide challenge for evaluation of patients with unilateral cerebrovascular steno-occlusive disease. Am J Neuroradiol. 2006;27(9):1876–81.

    CAS  PubMed  Google Scholar 

  17. Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. Am J Neuroradiol. 2009;30(5):876–84.

    Article  CAS  Google Scholar 

  18. Kang KH, Kim HS, Kim SY. Quantitative cerebrovascular reserve measured by acetazolamide-challenged dynamic CT perfusion in ischemic adult Moyamoya disease: initial experience with angiographic correlation. Am J Neuroradiol. 2008;29(8):1487–93.

    Article  CAS  Google Scholar 

  19. Rim NJ, Kim HS, Shin YS, Kim SY. Which CT perfusion parameter best reflects cerebrovascular reserve? Correlation of acetazolamide-challenged CT perfusion with single-photon emission CT in Moyamoya patients. Am J Neuroradiol. 2008;29(9):1658–63.

    Article  Google Scholar 

  20. Gupta A, Baradaran H, Schweitzer AD, Kamel H, Pandya A, Delgado D, Wright D, Hurtado-Rua S, Wang Y, Sanelli PC. Oxygen extraction fraction and stroke risk in patients with carotid stenosis or occlusion: a systematic review and meta-analysis. Am J Neuroradiol. 2014;35(2):250–5.

    Article  CAS  Google Scholar 

  21. Lu H, Ge Y. Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med. 2008;60:357–63.

    Article  Google Scholar 

  22. Xu F, Ge Y, Lu H. Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med. 2009;62:141–8.

    Article  Google Scholar 

  23. Kudo K, Liu T, Murakami T, Goodwin J, Uwano I, Yamashita F, Higuchi S, Wang Y, Ogasawara K, Ogawa A, Sasaki M. Oxygen extraction fraction measurement using quantitative susceptibility mapping: comparison with positron emission tomography. J Cereb Blood Flow Metab. 2016;36(8):1424–33.

    Article  CAS  Google Scholar 

  24. Nakaji P. The necessity of technical excellence and safety in EC-IC bypass surgery. World Neurosurg. 2014;82(5):577–8. https://doi.org/10.1016/j.wneu.2013.08.038.

    Article  PubMed  Google Scholar 

  25. Giovani A, Brehar F, Gorgan RM. Cerebral revascularization: direct versus indirect bypass. Case presentation and review. Rom Neurosurg. 2014;21:459–69. https://doi.org/10.2478/romneu-2014-0062.

    Article  Google Scholar 

  26. Kazumata K, Ito M, Tokairin K, Ito Y, Houkin K, Nakayama N, Kuroda S, Ishikawa T, Kamiyama H. The frequency of postoperative stroke in moyamoya disease following combined revascularization: a single-university series and systematic review. J Neurosurg. 2014;121(2):432–40. https://doi.org/10.3171/2014.1.JNS13946.

    Article  PubMed  Google Scholar 

  27. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA. 1995;273:1421–8.

    Article  Google Scholar 

  28. Tummala RP, Chu RM, Nussbaum ES. Extracranial-intracranial bypass for symptomatic occlusive cerebrovascular disease not amenable to carotid endarterectomy. Neurosurg Focus. 2003;14(3):e8.

    Article  Google Scholar 

  29. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325:445–53.

    Article  Google Scholar 

  30. Lopes DK, Mericle RA, Lanzino G, Wakhloo AK, Guterman LR, Hopkins LN. Stent placement for the treatment of occlusive atherosclerotic carotid artery disease in patients with concomitant coronary artery disease. J Neurosurg. 2002;96(3):490–6.

    Article  Google Scholar 

  31. Klijn CJM, Kappelle J, Tulleken CAF, van Gijn J. Symptomatic carotid artery occlusion. A reappraisal of hemodynamic factors. Stroke. 1997;28:2084–93.

    Article  CAS  Google Scholar 

  32. Ogasawara K, Ogawa A, Yoshimoto T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study. Stroke. 2002;33:1857–62.

    Article  Google Scholar 

  33. Miyamoto S. Japan Adult Moyamoya Trial Group: study design for a prospective randomized trial of extracranial-intracranial by-pass surgery for adults with moyamoya disease and hemorrhagic onset—the Japan Adult Moyamoya Trial Group. Neurol Med Chir. 2004;44:218–9.

    Article  Google Scholar 

  34. Merwick A, Werring D. Posterior circulation ischaemic stroke. BMJ. 2014;348:g3175.

    Article  Google Scholar 

  35. Grubb RL Jr. Extracranial-intracranial arterial bypass for treatment of occlusion of the internal carotid artery. Curr Neurol Neurosci Rep. 2004;4:23–30.

    Article  Google Scholar 

  36. Spetzler RF, Hadley MN, Martin NA, Hopkins LN, Carter LP, Budny J. Vertebrobasilar insufficiency. Part 1: microsurgical treatment of extracranial vertebrobasilar disease. J Neurosurg. 1987;66:648–61.

    Article  CAS  Google Scholar 

  37. Khodadad G. Occipital artery-posterior inferior cerebellar artery anastomosis. Surg Neurol. 1976;5:225–7.

    CAS  PubMed  Google Scholar 

  38. Coert BA, Chang SD, Marks MP, Steinberg GK. Revascularization of the posterior circulation. Skull Base. 2005;15:43–62.

    Article  Google Scholar 

  39. Hopkins LN, Martin NA, Hadley MN, Spetzler RF, Budny J, Carter LP. Vertebrobasilar insufficiency. Part 2. Microsurgical treatment of intracranial vertebrobasilar disease. J Neurosurg. 1987;66:662–74.

    Article  CAS  Google Scholar 

  40. Britz GW, Agarwal V, Mihlon F, Ramanathan D, Agrawal A, Nimjee SM, Kaylie D. Radial artery bypass for intractable vertebrobasilar insufficiency: case series and review of the literature. World Neurosurg. 2016;85:106–13.

    Article  Google Scholar 

  41. Sundt TM Jr, Piepgras DG, Houser OW, Campbell JK. Interposition saphenous vein grafts for advanced occlusive disease and large aneurysms in the posterior circulation. J Neurosurg. 1982;56:205–15.

    Article  Google Scholar 

  42. Ausman JI, Diaz FG, Vacca DF, Sadasivan B. Superficial temporal and occipital artery bypass pedicles to superior, anterior inferior, and posterior inferior cerebellar arteries for vertebrobasilar insufficiency. J Neurosurg. 1990;72:554–8.

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Lopez-Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eastin, M.T., Chakravarthy, V.B., Sharafeddin, F., Hoss, D., Lopez-Gonzalez, M.A. (2020). Current Open Surgical Indications for Revascularization in Cerebral Ischemia. In: Martin, R., Boling, W., Chen, G., Zhang, J. (eds) Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-04615-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04615-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04614-9

  • Online ISBN: 978-3-030-04615-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics