Advertisement

Current Open Surgical Indications for Revascularization in Cerebral Ischemia

  • Marc Timothy Eastin
  • Vikram Badhri Chakravarthy
  • Fransua Sharafeddin
  • Daniel Hoss
  • Miguel Angel Lopez-GonzalezEmail author
Chapter
Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA, volume 127)

Abstract

Cerebral revascularization was pioneered half a century ago. Gradual improvements in microsurgical instrumentation and training in microsurgical techniques have allowed significant changes that improved outcomes in neurosurgery, extrapolating this knowledge to other neurosurgical diseases (brain tumor, aneurysms, and skull base tumor surgery). But the popularity of cerebral bypass procedures was followed by their decline, given the lack of clear benefit of bypass surgery in chronic cerebrovascular ischemia after the EC-IC bypass studies. Over the last couple of decades, the formidable advance of neuro-endovascular techniques for revascularization has lessened the need for application of open cerebral revascularization procedures, either for flow augmentation or flow replacement. However, there is still a select group of patients with chronic cerebral ischemia, for whom open cerebral revascularization with flow augmentation is the only treatment option available, and this will be the objective of our current review.

Keywords

Cerebral bypass Cerebral ischemia Revascularization Flow augmentation Flow replacement Vertebrobasilar insufficiency Microsurgery 

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dente CJ, Feliciano DV. Alexis Carrel (1873-1944) Nobel Laureate, 1912. Arch Surg. 2005;140:609–10.CrossRefGoogle Scholar
  2. 2.
    Yasargil MG, Y Y. Results of microsurgical extra-intracranial arterial bypass in the treatment of cerebral ischemia. Neurosurgery. 1977;1:22–4.CrossRefGoogle Scholar
  3. 3.
    Lougheed WM, Marshall BM, Hunter M, Michel ER, Sandwith-Smyth H. Common carotid to intracranial carotid bypass venous graft: technical note. J Neurosurg. 1971;34(1):114–8.CrossRefGoogle Scholar
  4. 4.
    Ausman JI, Nicoloff DM, Chou SN. Posterior fossa revascularization: anastomosis of vertebral artery to PICA with interposed radial artery graft. Surg Neurol. 1978;9(5):281–6.PubMedGoogle Scholar
  5. 5.
    Sundt TM Jr, Piepgras DG, Marsh WR, Fode NC. Saphenous vein bypass grafts for giant aneurysms and intracranial occlusive disease. J Neurosurg. 1986;65:439–50.CrossRefGoogle Scholar
  6. 6.
    The EC/IC Bypass Study Group. Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med. 1985;313:1191–200.CrossRefGoogle Scholar
  7. 7.
    Sundt TM Jr. Was the International randomized trial of extracranial-intracranial arterial bypass representative of the population at risk? N Engl J Med. 1987;316:814–6.CrossRefGoogle Scholar
  8. 8.
    Powers WJ, Clarke WR, Grubb RL Jr, Videen TO, Adams HP Jr, Derdeyn CP, COSS Investigators. Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: the Carotid Occlusion Surgery Study randomized trial. JAMA. 2011;306:1983–92.CrossRefGoogle Scholar
  9. 9.
    Langer DJ, D V. Excimer laser-assisted nonocclusive anastomosis. Neurosurg Focus. 2008;24:1–11.CrossRefGoogle Scholar
  10. 10.
    Appireddy R, Zerna C, Menon BK, Goyal M. Endovascular interventions in acute ischemic stroke: recent evidence, current challenges, and future prospects. Curr Atheroscler Rep. 2016;18(7):40.CrossRefGoogle Scholar
  11. 11.
    Sheth SA, Liebeskind DS. Imaging evaluation of collaterals in the brain: physiology and clinical translation. Curr Radiol Rep. 2014;2(1):29.CrossRefGoogle Scholar
  12. 12.
    Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, Powers WJ. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain. 2002;125:595–607.CrossRefGoogle Scholar
  13. 13.
    Lythgoe DJ, Ostergaard L, William SC, Cluckie A, Buxton-Thomas M, Simmons A, Markus HS. Quantitative perfusion imaging in carotid artery stenosis using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Magn Reson Imaging. 2000;18(1):1–11.CrossRefGoogle Scholar
  14. 14.
    Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF, Narial T, Zaharchuk G, Caille JM, Dousset V, Yonas H. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36(9):e83–99.CrossRefGoogle Scholar
  15. 15.
    Kaneko K, Kuwabara Y, Mihara F, Yoshiura T, Nakagawa M, Tanaka A, Sasaki M, Koga H, Hayashi K, Honda H. Validation of the CBF, CBV, and MTT values by perfusion MRI in chronic occlusive cerebrovascular disease: a comparison with 15O-PET1. Acad Radiol. 2004;11(5):489–97.CrossRefGoogle Scholar
  16. 16.
    Chen A, Shyr MH, Chen TY, Lai HY, Lin CC, Yen PS. Dynamic CT perfusion imaging with acetazolamide challenge for evaluation of patients with unilateral cerebrovascular steno-occlusive disease. Am J Neuroradiol. 2006;27(9):1876–81.PubMedGoogle Scholar
  17. 17.
    Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. Am J Neuroradiol. 2009;30(5):876–84.CrossRefGoogle Scholar
  18. 18.
    Kang KH, Kim HS, Kim SY. Quantitative cerebrovascular reserve measured by acetazolamide-challenged dynamic CT perfusion in ischemic adult Moyamoya disease: initial experience with angiographic correlation. Am J Neuroradiol. 2008;29(8):1487–93.CrossRefGoogle Scholar
  19. 19.
    Rim NJ, Kim HS, Shin YS, Kim SY. Which CT perfusion parameter best reflects cerebrovascular reserve? Correlation of acetazolamide-challenged CT perfusion with single-photon emission CT in Moyamoya patients. Am J Neuroradiol. 2008;29(9):1658–63.CrossRefGoogle Scholar
  20. 20.
    Gupta A, Baradaran H, Schweitzer AD, Kamel H, Pandya A, Delgado D, Wright D, Hurtado-Rua S, Wang Y, Sanelli PC. Oxygen extraction fraction and stroke risk in patients with carotid stenosis or occlusion: a systematic review and meta-analysis. Am J Neuroradiol. 2014;35(2):250–5.CrossRefGoogle Scholar
  21. 21.
    Lu H, Ge Y. Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med. 2008;60:357–63.CrossRefGoogle Scholar
  22. 22.
    Xu F, Ge Y, Lu H. Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med. 2009;62:141–8.CrossRefGoogle Scholar
  23. 23.
    Kudo K, Liu T, Murakami T, Goodwin J, Uwano I, Yamashita F, Higuchi S, Wang Y, Ogasawara K, Ogawa A, Sasaki M. Oxygen extraction fraction measurement using quantitative susceptibility mapping: comparison with positron emission tomography. J Cereb Blood Flow Metab. 2016;36(8):1424–33.CrossRefGoogle Scholar
  24. 24.
    Nakaji P. The necessity of technical excellence and safety in EC-IC bypass surgery. World Neurosurg. 2014;82(5):577–8.  https://doi.org/10.1016/j.wneu.2013.08.038.CrossRefPubMedGoogle Scholar
  25. 25.
    Giovani A, Brehar F, Gorgan RM. Cerebral revascularization: direct versus indirect bypass. Case presentation and review. Rom Neurosurg. 2014;21:459–69.  https://doi.org/10.2478/romneu-2014-0062.CrossRefGoogle Scholar
  26. 26.
    Kazumata K, Ito M, Tokairin K, Ito Y, Houkin K, Nakayama N, Kuroda S, Ishikawa T, Kamiyama H. The frequency of postoperative stroke in moyamoya disease following combined revascularization: a single-university series and systematic review. J Neurosurg. 2014;121(2):432–40.  https://doi.org/10.3171/2014.1.JNS13946.CrossRefPubMedGoogle Scholar
  27. 27.
    Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA. 1995;273:1421–8.CrossRefGoogle Scholar
  28. 28.
    Tummala RP, Chu RM, Nussbaum ES. Extracranial-intracranial bypass for symptomatic occlusive cerebrovascular disease not amenable to carotid endarterectomy. Neurosurg Focus. 2003;14(3):e8.CrossRefGoogle Scholar
  29. 29.
    North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325:445–53.CrossRefGoogle Scholar
  30. 30.
    Lopes DK, Mericle RA, Lanzino G, Wakhloo AK, Guterman LR, Hopkins LN. Stent placement for the treatment of occlusive atherosclerotic carotid artery disease in patients with concomitant coronary artery disease. J Neurosurg. 2002;96(3):490–6.CrossRefGoogle Scholar
  31. 31.
    Klijn CJM, Kappelle J, Tulleken CAF, van Gijn J. Symptomatic carotid artery occlusion. A reappraisal of hemodynamic factors. Stroke. 1997;28:2084–93.CrossRefGoogle Scholar
  32. 32.
    Ogasawara K, Ogawa A, Yoshimoto T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study. Stroke. 2002;33:1857–62.CrossRefGoogle Scholar
  33. 33.
    Miyamoto S. Japan Adult Moyamoya Trial Group: study design for a prospective randomized trial of extracranial-intracranial by-pass surgery for adults with moyamoya disease and hemorrhagic onset—the Japan Adult Moyamoya Trial Group. Neurol Med Chir. 2004;44:218–9.CrossRefGoogle Scholar
  34. 34.
    Merwick A, Werring D. Posterior circulation ischaemic stroke. BMJ. 2014;348:g3175.CrossRefGoogle Scholar
  35. 35.
    Grubb RL Jr. Extracranial-intracranial arterial bypass for treatment of occlusion of the internal carotid artery. Curr Neurol Neurosci Rep. 2004;4:23–30.CrossRefGoogle Scholar
  36. 36.
    Spetzler RF, Hadley MN, Martin NA, Hopkins LN, Carter LP, Budny J. Vertebrobasilar insufficiency. Part 1: microsurgical treatment of extracranial vertebrobasilar disease. J Neurosurg. 1987;66:648–61.CrossRefGoogle Scholar
  37. 37.
    Khodadad G. Occipital artery-posterior inferior cerebellar artery anastomosis. Surg Neurol. 1976;5:225–7.PubMedGoogle Scholar
  38. 38.
    Coert BA, Chang SD, Marks MP, Steinberg GK. Revascularization of the posterior circulation. Skull Base. 2005;15:43–62.CrossRefGoogle Scholar
  39. 39.
    Hopkins LN, Martin NA, Hadley MN, Spetzler RF, Budny J, Carter LP. Vertebrobasilar insufficiency. Part 2. Microsurgical treatment of intracranial vertebrobasilar disease. J Neurosurg. 1987;66:662–74.CrossRefGoogle Scholar
  40. 40.
    Britz GW, Agarwal V, Mihlon F, Ramanathan D, Agrawal A, Nimjee SM, Kaylie D. Radial artery bypass for intractable vertebrobasilar insufficiency: case series and review of the literature. World Neurosurg. 2016;85:106–13.CrossRefGoogle Scholar
  41. 41.
    Sundt TM Jr, Piepgras DG, Houser OW, Campbell JK. Interposition saphenous vein grafts for advanced occlusive disease and large aneurysms in the posterior circulation. J Neurosurg. 1982;56:205–15.CrossRefGoogle Scholar
  42. 42.
    Ausman JI, Diaz FG, Vacca DF, Sadasivan B. Superficial temporal and occipital artery bypass pedicles to superior, anterior inferior, and posterior inferior cerebellar arteries for vertebrobasilar insufficiency. J Neurosurg. 1990;72:554–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marc Timothy Eastin
    • 1
  • Vikram Badhri Chakravarthy
    • 2
  • Fransua Sharafeddin
    • 3
  • Daniel Hoss
    • 4
  • Miguel Angel Lopez-Gonzalez
    • 1
    Email author
  1. 1.Neurosurgery DepartmentSchool of Medicine, Loma Linda UniversityLoma LindaUSA
  2. 2.Neurosurgery DepartmentCleveland Clinic FoundationClevelandUSA
  3. 3.Center for Neuroscience ResearchSchool of Medicine, Loma Linda UniversityLoma LindaUSA
  4. 4.Interventional Neuroradiology DepartmentSchool of Medicine, Loma Linda UniversityLoma LindaUSA

Personalised recommendations