Advertisement

Thromboelastometry as a Comprehensive Assessment of Hypercoagulation After Aneurysmal Subarachnoid Hemorrhage: A Case Report and Literature Review

  • Anastasia I. BaranichEmail author
  • Aleksandr A. Polupan
  • Aleksandr A. Sychev
  • Ivan A. Savin
  • Togrul F. Tabasaranskiy
  • Natalia V. Kurdumova
  • Shalva Sh. Eliava
Chapter
Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA, volume 127)

Abstract

Subarachnoid hemorrhage after cerebral aneurysm rupture (aSAH) leads to delayed cerebral ischemia (DCI) in 25–35% of surviving patients. It is believed that DCI has a multifactorial etiology, including vasospasm. Furthermore, aSAH is associated with the development of hypercoagulation and microthrombosis; thus, its pharmacological correction may help to prevent DCI. We encountered a case where hypercoagulation was detected using rotational thromboelastometry (ROTEM), although the standard coagulation test results were within the normal ranges. Based on reviews of viscoelastic tests in cases of aSAH, ROTEM could be more sensitive to hypercoagulation after aSAH, compared to standard coagulation testing.

Keywords

Subarachnoid hemorrhage Microthrombosis Delayed cerebral ischemia Secondary brain injury 

Notes

Conflict of Interest

The authors declare no conflicts of interest.

References

  1. 1.
    Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97(1):14–37.  https://doi.org/10.1016/j.pneurobio.2012.02.003.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Francoeur CL, Mayer SA. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit Care. 2016;20(1):277.  https://doi.org/10.1186/s13054-016-1447-6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Millikan CH. Cerebral vasospasm and ruptured intracranial aneurysm. Arch Neurol. 1975;32:433–49.CrossRefGoogle Scholar
  4. 4.
    Rowland MJ, Hadjipavlou G, Kelly M, Westbrook J, Pattinson KT. Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth. 2012;109(3):315–29.  https://doi.org/10.1093/bja/aes26.CrossRefPubMedGoogle Scholar
  5. 5.
    Terpolilli NA, Brem C, Bühler D, Plesnila N. Are we barking up the wrong vessels? Cerebral microcirculation after subarachnoid hemorrhage. Stroke. 2015;46(10):3014–9.  https://doi.org/10.1161/STROKEAHA.115.006353.CrossRefPubMedGoogle Scholar
  6. 6.
    Ranucci M. Point-of-care tests for severe hemorrhage. A manual for diagnosis and treatment. Cham: Springer; 2016.CrossRefGoogle Scholar
  7. 7.
    Leonardo de Oliveira Manoel A, Goffi A, Marotta TR, Schweizer TA. The critical care management of poor-grade subarachnoid hemorrhage. Crit Care. 2016;20:21.  https://doi.org/10.1186/s13054-016-1193-9.CrossRefGoogle Scholar
  8. 8.
    Andereggen L, Neuschmelting V, Von Gunten M, Widmer HR. The role of microclot formation in an acute subarachnoid hemorrhage model in the rabbit. Biomed Res Int. 2014;2014:161702.  https://doi.org/10.1155/2014/161702.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mackman N. The role of tissue factor and factor VIIa in hemostasis. Anesth Analg. 2009;108(5):1447–52.  https://doi.org/10.1213/ane.0b013e31819bceb1.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Berlot G. Hemocoagulative problems in the critically ill patient. Cham: Springer; 2012.CrossRefGoogle Scholar
  11. 11.
    Monroe DM, Hoffman M. Theories of blood coagulation: basic concepts and recent updates. In: Hemostasis and thrombosis. Oxford: Wiley; 2014.Google Scholar
  12. 12.
    Lichtin A, Bartholomew J. The coagulation consult. A case-based guide. Cham: Springer; 2014.CrossRefGoogle Scholar
  13. 13.
    Budohoski KP, Guilfoyle M, Helmy A, Huuskonen T, Czosnyka M. The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2014;85(12):1343–53.  https://doi.org/10.1136/jnnp-2014-307711.CrossRefPubMedGoogle Scholar
  14. 14.
    Stein SC, Browne KD, Chen XH, Smith DH, Graham DI. Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. Neurosurgery. 2006;59(4):781–7 . discussion 787-8.  https://doi.org/10.1227/01.NEU.0000227519.27569.45.CrossRefPubMedGoogle Scholar
  15. 15.
    Sehba FA, Mostafa G, Friedrich V Jr, Bederson JB. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102(6):1094–100.  https://doi.org/10.3171/jns.2005.102.6.1094.CrossRefPubMedGoogle Scholar
  16. 16.
    Juvela S, Hillbom M, Kaste M. Platelet thromboxane release and delayed cerebral ischemia in patients with subarachnoid hemorrhage. J Neurosurg. 1991;74(3):386–92.  https://doi.org/10.3171/jns.1991.74.3.0386.CrossRefPubMedGoogle Scholar
  17. 17.
    Thomas ME, Osmani AH, Scrutton MC. Some properties of the human platelet vasopressin receptor. Thromb Res. 1983;32(6):557–66.  https://doi.org/10.1016/0049-3848(83)90057-9.CrossRefPubMedGoogle Scholar
  18. 18.
    Friedrich B, Müller F, Feiler S, Schöller K, Plesnila N. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J Cereb Blood Flow Metab. 2012;32(3):447–55.  https://doi.org/10.1038/jcbfm.2011.154.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu ZW, Gu H, Zhang BF, Zhao YH, Zhao JJ. Rapidly increased vasopressin promotes acute platelet aggregation and early brain injury after experimental subarachnoid hemorrhage in a rat model. Brain Res. 2016;1639:108–19.  https://doi.org/10.1016/j.brainres.2016.02.038.CrossRefPubMedGoogle Scholar
  20. 20.
    Hockel K, Schöller K, Trabold R, Nussberger J. Vasopressin V(1a) receptors mediate posthemorrhagic systemic hypertension thereby determining rebleeding rate and outcome after experimental subarachnoid hemorrhage. Stroke. 2012;43(1):227–32.  https://doi.org/10.1161/STROKEAHA.111.626168.CrossRefPubMedGoogle Scholar
  21. 21.
    Foreman PM, Chua M, Harrigan MR, Fisher WS 3rd., Vyas NA. Association of nosocomial infections with delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. J Neurosurg. 2016;125(6):1383–9.  https://doi.org/10.3171/2015.10.JNS151959.CrossRefPubMedGoogle Scholar
  22. 22.
    Gerlach R, Krause M, Seifert V. Hemostatic and hemorrhagic problems in neurosurgical patients. Acta Neurochir. 2009;151(8):873–900 . discussion 900.  https://doi.org/10.1007/s00701-009-0409-z.CrossRefPubMedGoogle Scholar
  23. 23.
    Hamilton MG, Golfios JG, Pineo GF. Handbook of bleeding and coagulation for neurosurgery. Stuttgart: Thieme; 2015.CrossRefGoogle Scholar
  24. 24.
    Ramchand P, Nyirjesy S, Frangos S, Doerfler S, Nawalinski K. Thromboelastography parameter predicts outcome after subarachnoid hemorrhage: an exploratory analysis. World Neurosurg. 2016;96:215–21.  https://doi.org/10.1016/j.wneu.2016.04.002.CrossRefPubMedGoogle Scholar
  25. 25.
    Frontera JA, Provencio JJ, Sehba FA, McIntyre TM, Nowacki AS. The role of platelet activation and inflammation in early brain injury following subarachnoid hemorrhage. Neurocrit Care. 2017;26(1):48–57.  https://doi.org/10.1007/s12028-016-0292-4.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anastasia I. Baranich
    • 1
    Email author
  • Aleksandr A. Polupan
    • 1
  • Aleksandr A. Sychev
    • 1
  • Ivan A. Savin
    • 1
  • Togrul F. Tabasaranskiy
    • 1
  • Natalia V. Kurdumova
    • 1
  • Shalva Sh. Eliava
    • 1
  1. 1.Department of Neurocritical CareN.N. Burdenko National Scientific and Practical Center for NeurosurgeryMoscowRussia

Personalised recommendations