Advertisement

The Time Course of Cognitive Deficits in Experimental Subarachnoid Hemorrhage

  • Zhiyuan Vera Zheng
  • Ping Kuen Lam
  • Wai Sang Poon
  • Kwok Chu George WongEmail author
Chapter
Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA, volume 127)

Abstract

Subarachnoid hemorrhage (SAH) is a devastating stroke type. Approximately 50% of survivors suffer from the permanent disability, caused by the cognitive deficits. To enrich the pre-clinical research on the neurological deficits after SAH, we investigate the temporal cognitive deficits and the longitudinal course of cognitive recovery in endovascular perforation SAH murine model. The SAH mice show reproducible body weakness and headache-symbolized moaning symptoms, which is closed to clinical patients. SAH mice exhibit significantly impaired cognitive function in domains of learning ability, short-term and long-term memory. The cognitive deficits occur mostly in the early phase and recover gradually till day 10 after SAH. The systematical assessments of cognitive function after experimental aneurysmal SAH elucidate the time course of cognitive deficits and provide the time window of potential interventions.

Keywords

Subarachnoid hemorrhage Animal model Cognitive deficits 

Notes

Acknowledgments

The authors appreciate the help and support from the colleagues of the Department of Surgery, The Chinese University of Hong Kong.

Conflict of Interest Statement: The authors declared no financial or intellectual conflict of interest.

References

  1. 1.
    Al-Khindi T, MacDonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41:e519–36.CrossRefGoogle Scholar
  2. 2.
    Arqué G, Fotaki V, Fernández D, de Lagrán MM, Arbonés ML, Dierssen M. Impaired spatial learning strategies and novel object recognition in mice haploinsufficient for the dual specificity tyrosine-regulated kinase-1A (Dyrk1A). PLoS One. 2008;3:e2575.CrossRefGoogle Scholar
  3. 3.
    Cahill J, Zhang JH. Subarachnoid hemorrhage: is it time for a new direction? Stroke. 2009;40:86–8.CrossRefGoogle Scholar
  4. 4.
    Chen S, Hospital SA, Linda L, Linda L, Wu H, Hospital SA, Tang J, Zhang J, Hospital SA, Zhang JH. Neurovascular events after subarachnoid hemorrhage: focusing on subcellular organelles, vol. 120; 2015. p. 39–46.CrossRefGoogle Scholar
  5. 5.
    Du GJ, Lu G, Zheng ZY, Poon WS, Chu K, Wong G. Endovascular perforation murine model of subarachnoid hemorrhage. Acta Neurochir Suppl. 2016;121:83–8.CrossRefGoogle Scholar
  6. 6.
    Fanizzi C, Sauerbeck AD, Gangolli M, Zipfel GJ, Brody DL, Kummer TT. Minimal long-term neurobehavioral impairments after endovascular perforation subarachnoid hemorrhage in mice. Sci Rep. 2017;7:7569.CrossRefGoogle Scholar
  7. 7.
    Hou J, Zhang JH. Does prevention of vasospasm in subarachnoid hemorrhage improve clinical outcome? No Stroke. 2013;44:29–30.CrossRefGoogle Scholar
  8. 8.
    Hütter BO, Kreitschmann-Andermahr I, Gilsbach JM. Cognitive deficits in the acute stage after subarachnoid hemorrhage. Neurosurgery. 1998;43:1054–65.CrossRefGoogle Scholar
  9. 9.
    Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8.CrossRefGoogle Scholar
  10. 10.
    Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, Du E, Stern Y, Connolly ES, Mayer SA. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke. 2002;33:200–9.CrossRefGoogle Scholar
  11. 11.
    Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T. Object recognition test in mice. Nat Protoc. 2013;8:2531–7.CrossRefGoogle Scholar
  12. 12.
    Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2013;10:44–58.CrossRefGoogle Scholar
  13. 13.
    Mayer S, Kreiter K, Copeland D, Bernardini G, Bates J, Peery S, Claassen J, Du Y, Connolly E. Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology. 2002;59:1750–8.CrossRefGoogle Scholar
  14. 14.
    Sehba FA, Pluta RM, Zhang JH. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol. 2011;43:27–40.CrossRefGoogle Scholar
  15. 15.
    Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–58.CrossRefGoogle Scholar
  16. 16.
    Wong GKC, Lam SW, Ngai K, et al. Cognitive domain deficits in patients with aneurysmal subarachnoid haemorrhage at 1 year. J Neurol Neurosurg Psychiatry. 2013;84:1054–8.CrossRefGoogle Scholar
  17. 17.
    Wong GKC, Lam SW, Wong A, Ngai K, Mok V, Poon WS. Early cognitive domain deficits in patients with aneurysmal subarachnoid hemorrhage correlate with functional status, vol. 114; 2012. p. 129–32.Google Scholar
  18. 18.
    Zheng VZ, Wong GKC. Neuroinflammation responses after subarachnoid hemorrhage: a review. J Clin Neurosci. 2017;42:7–11.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zhiyuan Vera Zheng
    • 1
  • Ping Kuen Lam
    • 2
  • Wai Sang Poon
    • 1
  • Kwok Chu George Wong
    • 1
    Email author
  1. 1.Division of Neurosurgery, Department of SurgeryThe Chinese University of Hong Kong, Prince of Wales HospitalHong KongChina
  2. 2.Department of SurgeryChow Tai Fook-Cheng Yu Tung Surgical Stem cell Research Centre, The Chinese University of Hong KongHong KongChina

Personalised recommendations