Subarachnoid Hemorrhage Pattern Predicts Acute Cerebral Blood Flow Response in the Rat

  • Jesse J. Liu
  • Jeffrey S. Raskin
  • Robin McFarlane
  • Ravi Samatham
  • Justin S. CetasEmail author
Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA, volume 127)


There is considerable variability in the presentation of patients with acute subarachnoid hemorrhage (aSAH). Evidence suggests that a thick, diffuse clot better predicts the development of delayed cerebral ischemia and poor outcomes. In a rodent model of acute SAH, we directly measured the effects of the volume of blood injected versus the pattern of distribution of hemorrhage in the subarachnoid space on markers of early brain injury, namely, cerebral blood flow (CBF), cerebrospinal fluid (CSF) concentrations of P450 eicosanoids and catecholamines, and cortical spreading depolarizations (CSDs). There is a significant decrease in CBF, an increase in CSF biomarkers, and a trend toward increasing frequency and severity of CSDs when grouped by severity of hemorrhage but not by volume of blood injected. In severe hemorrhage grade animals, there was a progressive decrease in CBF after successive CSD events. These results suggest that the pattern of SAH (thick diffuse clots) correlates with the “clinical” severity of SAH.


Subarachnoid hemorrhage P450 eicosanoids 20-HETE 14,15-EET Cortical spreading depolarization Early brain injury Stroke glymphatic 



This work was supported by the Veterans Administration Merit # 5I01 BX001659-03 from the US Department of Veterans Affairs.

Conflict of Interest: The authors declare that they have no conflict of interest.


  1. 1.
    de Rooij NK, Linn FHH, van der Plas JA, Algra A, Rinkel GJE. Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry. 2007;78(12):1365–72.CrossRefGoogle Scholar
  2. 2.
    Al-Shahi R. Subarachnoid haemorrhage. BMJ. 2006;333(7561):235–40.CrossRefGoogle Scholar
  3. 3.
    Dengler NF, Diesing D, Sarrafzadeh A, Wolf S, Vajkoczy P. The Barrow neurological institute scale revisited: predictive capabilities for cerebral infarction and clinical outcome in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2017;81(2):341–9.CrossRefGoogle Scholar
  4. 4.
    Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6(1):1–9.CrossRefGoogle Scholar
  5. 5.
    Frontera JA, Claassen J, Schmidt JM, Wartenberg KE, Temes R, Connolly ES, MacDonald RL, Mayer SA. Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the modified fisher scale. Neurosurgery. 2006;59(1):21–7. discussion 21-27.CrossRefGoogle Scholar
  6. 6.
    Konczalla J, Kashefiolasl S, Brawanski N, Bruder M, Gessler F, Senft C, Berkefeld J, Seifert V, Tritt S. Cerebral vasospasm–dependent and cerebral vasospasm–independent cerebral infarctions predict outcome after nonaneurysmal subarachnoid hemorrhage: a single-center series with 250 patients. World Neurosurg. 2017;106:861–869.e4.CrossRefGoogle Scholar
  7. 7.
    Raya A, Zipfel GJ, Diringer MN, Dacey RG, Derdeyn CP, Rich KM, Chicoine MR, Dhar R. Pattern not volume of bleeding predicts angiographic vasospasm in nonaneurysmal subarachnoid hemorrhage. Stroke. 2014;45(1):265–7.CrossRefGoogle Scholar
  8. 8.
    Walcott BP, Stapleton CJ, Koch MJ, Ogilvy CS. Diffuse patterns of nonaneurysmal subarachnoid hemorrhage originating from the Basal cisterns have predictable vasospasm rates similar to aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2015;24(4):795–801.CrossRefGoogle Scholar
  9. 9.
    Al-Mufti F, Amuluru K, Smith B, Damodara N, El-Ghanem M, Singh IP, Dangayach N, Gandhi CD. Emerging markers of early brain injury and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. World Neurosurg. 2017;107:148–59.CrossRefGoogle Scholar
  10. 10.
    Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97(1):14–37.CrossRefGoogle Scholar
  11. 11.
    Cambj-Sapunar L, Yu M, Harder DR, Roman RJ. Contribution of 5-hydroxytryptamine1b receptors and 20-hydroxyeiscosatetraenoic acid to fall in cerebral blood flow after subarachnoid hemorrhage. Stroke. 2003;34(5):1269–75.CrossRefGoogle Scholar
  12. 12.
    Roman RJ, Renic M, Dunn KMJ, Takeuchi K, Hacein-Bey L. Evidence that 20-HETE contributes to the development of acute and delayed cerebral vasospasm. Neurol Res. 2006;28(7):738–49.CrossRefGoogle Scholar
  13. 13.
    Qu Y-Y, Yuan M-Y, Liu Y, Xiao X-J, Zhu Y-L. The protective effect of epoxyeicosatrienoic acids on cerebral ischemia/reperfusion injury is associated with PI3K/AKT pathway and ATP-sensitive potassium channels. Neurochem Res. 2015;40(1):1–14.CrossRefGoogle Scholar
  14. 14.
    Siler DA, Berlow YA, Kukino A, Davis CM, Nelson JW, Grafe MR, Ono H, Cetas JS, Pike M, Alkayed NJ. Soluble epoxide hydrolase in hydrocephalus, cerebral edema, and vascular inflammation after subarachnoid hemorrhage. Stroke. 2015;46(7):1916–22.CrossRefGoogle Scholar
  15. 15.
    Sudhahar V, Shaw S, Imig JD. Epoxyeicosatrienoic acid analogs and vascular function. Curr Med Chem. 2010;17(12):1181–90.CrossRefGoogle Scholar
  16. 16.
    Martini RP, Ward J, Siler D, Eastman JM, Nelson J, Borkar R, Alkayed N, Dogan A, Cetas J. Genetic variation in soluble epoxide hydrolase is associated with outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2014;121(6):1359–66.CrossRefGoogle Scholar
  17. 17.
    Siler DA, Martini RP, Ward JP, et al. Protective role of P450 epoxyeicosanoids in subarachnoid hemorrhage. Neurocrit Care. 2015;22(2):306–19.CrossRefGoogle Scholar
  18. 18.
    Sánchez-Porras R, Zheng Z, Santos E, Schöll M, Unterberg AW, Sakowitz OW. The role of spreading depolarization in subarachnoid hemorrhage. Eur J Neurol. 2013;20(8):1121–7.CrossRefGoogle Scholar
  19. 19.
    Dreier JP, Drenckhahn C, Woitzik J, et al. Spreading ischemia after aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:125–9.PubMedGoogle Scholar
  20. 20.
    Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev. 2015;95(3):953–93.CrossRefGoogle Scholar
  21. 21.
    Hamming AM, Wermer MJ, Umesh Rudrapatna S, et al. Spreading depolarizations increase delayed brain injury in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2016;36(7):1224–31.CrossRefGoogle Scholar
  22. 22.
    Cetas JS, McFarlane R, Kronfeld K, Smitasin P, Liu JJ, Raskin JS. Brainstem opioidergic system is involved in early response to experimental SAH. Transl Stroke Res. 2015;6(2):140–7.CrossRefGoogle Scholar
  23. 23.
    Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34.CrossRefGoogle Scholar
  24. 24.
    Prunell GF, Mathiesen T, Diemer NH, Svendgaard N-A. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52(1):165–76.PubMedGoogle Scholar
  25. 25.
    Prunell GF, Mathiesen T, Svendgaard N-A. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport. 2002;13(18):2553.CrossRefGoogle Scholar
  26. 26.
    Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013;4(4):432–46.CrossRefGoogle Scholar
  27. 27.
    Balbi M, Koide M, Wellman GC, Plesnila N. Inversion of neurovascular coupling after subarachnoid hemorrhage in vivo. J Cereb Blood Flow Metab. 2017;37(11):3625–34.CrossRefGoogle Scholar
  28. 28.
    Wang J, Alotaibi NM, Akbar MA, Ayling OGS, Ibrahim GM, Macdonald RL. Loss of consciousness at onset of aneurysmal subarachnoid hemorrhage is associated with functional outcomes in good-grade patients. World Neurosurg. 2017;98:308–13.CrossRefGoogle Scholar
  29. 29.
    Crago EA, Thampatty BP, Sherwood PR, Kuo C-WJ, Bender C, Balzer J, Horowitz M, Poloyac SM. CSF 20-HETE is associated with delayed cerebral ischemia and poor outcomes after aneurysmal subarachnoid hemorrhage. Stroke J Cereb Circ. 2011;42(7):1872–7.CrossRefGoogle Scholar
  30. 30.
    Donnelly MK, Crago EA, Conley YP, Balzer JR, Ren D, Ducruet AF, Kochanek PM, Sherwood PR, Poloyac SM. 20-HETE is associated with unfavorable outcomes in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab. 2015;35(9):1515–22.CrossRefGoogle Scholar
  31. 31.
    Geng H-X, Li R-P, Li Y-G, Wang X-Q, Zhang L, Deng J-B, Wang L, Deng J-X. 14,15-EET suppresses neuronal apoptosis in ischemia–reperfusion through the mitochondrial pathway. Neurochem Res. 2017;42(10):2841–9.CrossRefGoogle Scholar
  32. 32.
    Yuan L, Liu J, Dong R, Zhu J, Tao C, Zheng R, Zhu S. 14,15-epoxyeicosatrienoic acid promotes production of brain derived neurotrophic factor from astrocytes and exerts neuroprotective effects during ischaemic injury. Neuropathol Appl Neurobiol. 2016;42(7):607–20.CrossRefGoogle Scholar
  33. 33.
    Donnelly MK, Conley YP, Crago EA, Ren D, Sherwood PR, Balzer JR, Poloyac SM. Genetic markers in the EET metabolic pathway are associated with outcomes in patients with aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2015;35(2):267–76.CrossRefGoogle Scholar
  34. 34.
    Moussouttas M, Huynh TT, Khoury J, Lai EW, Dombrowski K, Pello S, Pacak K. Cerebrospinal fluid catecholamine levels as predictors of outcome in subarachnoid hemorrhage. Cerebrovasc Dis. 2012;33(2):173–81.CrossRefGoogle Scholar
  35. 35.
    Ogura T, Satoh A, Ooigawa H, et al. Characteristics and prognostic value of acute catecholamine surge in patients with aneurysmal subarachnoid hemorrhage. Neurol Res. 2012;34(5):484–90.CrossRefGoogle Scholar
  36. 36.
    Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60.CrossRefGoogle Scholar
  37. 37.
    Piilgaard H, Lauritzen M. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex. J Cereb Blood Flow Metab. 2009;29(9):1517–27.CrossRefGoogle Scholar
  38. 38.
    Bacyinski A, Xu M, Wang W, Hu J. The paravascular pathway for brain waste clearance: current understanding, significance and controversy. Front Neuroanat. 2017;11:101. Scholar
  39. 39.
    Goulay R, Flament J, Gauberti M, et al. Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate. Stroke. 2017;48(8):2301–5.CrossRefGoogle Scholar
  40. 40.
    Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke. 2013;44(6 suppl 1):S93–5.CrossRefGoogle Scholar
  41. 41.
    Gaberel T, Gakuba C, Goulay R, De Lizarrondo SM, Hanouz J-L, Emery E, Touze E, Vivien D, Gauberti M. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI. Stroke. 2014;45(10):3092–6.CrossRefGoogle Scholar
  42. 42.
    Luo C, Yao X, Li J, et al. Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control. Cell Death Dis. 2016;7(3):e2160.CrossRefGoogle Scholar
  43. 43.
    Siler DA, Gonzalez JA, Wang RK, Cetas JS, Alkayed NJ. Intracisternal administration of tissue plasminogen activator improves cerebrospinal fluid flow and cortical perfusion after subarachnoid hemorrhage in mice. Transl Stroke Res. 2014;5(2):227–37.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jesse J. Liu
    • 1
  • Jeffrey S. Raskin
    • 1
  • Robin McFarlane
    • 2
  • Ravi Samatham
    • 1
  • Justin S. Cetas
    • 1
    • 2
    Email author
  1. 1.Department of Neurological SurgeryOregon Health & Science UniversityPortlandUSA
  2. 2.Portland VA Medical CenterPortlandUSA

Personalised recommendations