Advertisement

Optimal Pricing for MHR Distributions

  • Yiannis GiannakopoulosEmail author
  • Keyu Zhu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11316)

Abstract

We study the performance of anonymous posted-price selling mechanisms for a standard Bayesian auction setting, where n bidders have i.i.d. valuations for a single item. We show that for the natural class of Monotone Hazard Rate (MHR) distributions, offering the same, take-it-or-leave-it price to all bidders can achieve an (asymptotically) optimal revenue. In particular, the approximation ratio is shown to be \(1+O(\ln {\ln {n}}/ \ln {n})\), matched by a tight lower bound for the case of exponential distributions. This improves upon the previously best-known upper bound of \(e/(e-1)\approx 1.58\) for the slightly more general class of regular distributions. In the worst case (over n), we still show a global upper bound of 1.35. We give a simple, closed-form description of our prices which, interestingly enough, relies only on minimal knowledge of the prior distribution, namely just the expectation of its second-highest order statistic.

References

  1. 1.
    Alaei, S.: Bayesian combinatorial auctions: expanding single buyer mechanisms to many buyers. SIAM J. Comput. 43(2), 930–972 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alaei, S., Hartline, J., Niazadeh, R., Pountourakis, E., Yuan, Y.: Optimal auctions vs. anonymous pricing. In: Proceedings of IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS, pp. 1446–1463 (2015)Google Scholar
  3. 3.
    Babaioff, M., Blumrosen, L., Dughmi, S., Singer, Y.: Posting prices with unknown distributions. ACM Trans. Econ. Comput. 5(2), 13:1–13:20 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barlow, R.E., Proschan, F.: Mathematical Theory of Reliability. Society for Industrial and Applied Mathematics, Philadelphia (1996)CrossRefGoogle Scholar
  5. 5.
    Bhattacharya, S., Goel, G., Gollapudi, S., Munagala, K.: Budget constrained auctions with heterogeneous items. In: Proceedings of the 42nd ACM symposium on Theory of Computing, pp. 379–388 (2010)Google Scholar
  6. 6.
    Blumrosen, L., Holenstein, T.: Posted prices vs. negotiations: an asymptotic analysis. In: Proceedings of the 9th ACM Conference on Electronic Commerce, EC, p. 49 (2008)Google Scholar
  7. 7.
    Bulow, J., Klemperer, P.: Auctions versus negotiations. Am. Econ. Rev. 86(1), 180–194 (1996)Google Scholar
  8. 8.
    Cai, Y., Daskalakis, C.: Extreme-value theorems for optimal multidimensional pricing. Proceedings of IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS, pp. 522–531 (2011)Google Scholar
  9. 9.
    Cesa-Bianchi, N., Gentile, C., Mansour, Y.: Regret minimization for reserve prices in second-price auctions. IEEE Trans. Inf. Theory 61(1), 549–564 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism design and sequential posted pricing. In: Proceedings of the 42nd ACM symposium on Theory of Computing, STOC, pp. 311–320 (2010)Google Scholar
  11. 11.
    Correa, J., Foncea, P., Hoeksma, R., Oosterwijk, T., Vredeveld, T.: Posted price mechanisms for a random stream of customers. In: Proceedings of the 18th ACM Conference on Economics and Computation, EC, pp. 169–186 (2017)Google Scholar
  12. 12.
    Daskalakis, C., Weinberg, S.M.: Symmetries and optimal multi-dimensional mechanism design. In: Proceedings of the 13th ACM Conference on Electronic Commerce, EC, pp. 370–387 (2012)Google Scholar
  13. 13.
    Dhangwatnotai, P., Roughgarden, T., Yan, Q.: Revenue maximization with a single sample. Games Econ. Behav. 91(C), 318–333 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Dütting, P., Fischer, F.A., Klimm, M.: Revenue gaps for discriminatory and anonymous sequential posted pricing. CoRR abs/1607.07105 (2016). http://arxiv.org/abs/1607.07105v1
  15. 15.
    Fu, H., Immorlica, N., Lucier, B., Strack, P.: Randomization beats second price as a prior-independent auction. In: Proceedings of the 16th ACM Conference on Economics and Computation, EC, p. 323 (2015)Google Scholar
  16. 16.
    Giannakopoulos, Y., Koutsoupias, E., Lazos, P.: Online market intermediation. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th International Colloquium on Automata, Languages, and Programming, ICALP. LIPIcs, vol. 80, pp. 47:1–47:14 (2017)Google Scholar
  17. 17.
    Giannakopoulos, Y., Kyropoulou, M.: The VCG mechanism for Bayesian scheduling. ACM Trans. Econ. Comput. 5(4), 19:1–19:16 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Giannakopoulos, Y., Zhu, K.: Optimal pricing for MHR distributions. CoRR abs/1810.00800, October 2018. http://arxiv.org/pdf/1810.00800.pdf
  19. 19.
    Hajiaghayi, M.T., Kleinberg, R.D., Sandholm, T.: Automated online mechanism design and prophet inequalities. In: Proceedings of the 22nd Conference on Artificial Intelligence, AAAI (2007)Google Scholar
  20. 20.
    Hartline, J.D.: Mechanism design and approximation, Chap. 4, Manuscript (2017). http://jasonhartline.com/MDnA/
  21. 21.
    Hartline, J.D., Roughgarden, T.: Simple versus optimal mechanisms. In: Proceedings of the 10th ACM Conference on Electronic Commerce, EC, pp. 225–234 (2009)Google Scholar
  22. 22.
    Jin, Y., Lu, P., Tang, Z.G., Xiao, T.: Tight revenue gaps among simple mechanisms. CoRR abs/1804.00480, April 2018. http://arxiv.org/abs/1804.00480
  23. 23.
    Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing, STOC, pp. 123–136 (2012)Google Scholar
  24. 24.
    Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nisan, N.: Introduction to mechanism design (for computer scientists), Chap. 9. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V. (eds.) Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  26. 26.
    Yan, Q.: Mechanism design via correlation gap. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 710–719 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.TU MunichMunichGermany
  2. 2.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations