Advertisement

Pricing Multi-unit Markets

  • Tomer Ezra
  • Michal Feldman
  • Tim Roughgarden
  • Warut SuksompongEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11316)

Abstract

We study the power and limitations of posted prices in multi-unit markets, where agents arrive sequentially in an arbitrary order. We prove upper and lower bounds on the largest fraction of the optimal social welfare that can be guaranteed with posted prices, under a range of assumptions about the designer’s information and agents’ valuations. Our results provide insights about the relative power of uniform and non-uniform prices, the relative difficulty of different valuation classes, and the implications of different informational assumptions. Among other results, we prove constant-factor guarantees for agents with (symmetric) subadditive valuations, even in an incomplete-information setting and with uniform prices.

References

  1. 1.
    Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. Am. Econ. Rev. 94(5), 1452–1475 (2004)CrossRefGoogle Scholar
  2. 2.
    Babaioff, M., Blumrosen, L., Dughmi, S., Singer, Y.: Posting prices with unknown distributions. In: Proceedings of the 1st Innovations in Computer Science, pp. 166–178 (2011)Google Scholar
  3. 3.
    Babaioff, M., Dughmi, S., Kleinberg, R., Slivkins, A.: Dynamic pricing with limited supply. ACM Trans. Econ. Comput. 3(1), 4:1–4:26 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Babaioff, M., Immorlica, N., Lucier, B., Weinberg, S.M.: A simple and approximately optimal mechanism for an additive buyer. In: Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science, pp. 21–30 (2014)Google Scholar
  5. 5.
    Bateni, M.H., Dehghani, S., Hajiaghayi, M.T., Seddighin, S.: Revenue maximization for selling multiple correlated items. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 95–105. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48350-3_9CrossRefGoogle Scholar
  6. 6.
    Bhawalkar, K., Roughgarden, T.: Simultaneous single-item auctions. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 337–349. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35311-6_25CrossRefGoogle Scholar
  7. 7.
    Blumrosen, L., Holenstein, T.: Posted prices vs. negotiations: an asymptotic analysis. In: Proceedings of the 9th ACM Conference on Electronic Commerce, p. 49 (2008)Google Scholar
  8. 8.
    Chawla, S., Hartline, J.D., Kleinberg, R.D.: Algorithmic pricing via virtual valuations. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 243–251 (2007)Google Scholar
  9. 9.
    Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism design and sequential posted pricing. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 311–320 (2010)Google Scholar
  10. 10.
    Chawla, S., Malec, D.L., Sivan, B.: The power of randomness in Bayesian optimal mechanism design. In: Proceedings of the 11th ACM Conference on Electronic Commerce, pp. 149–158 (2010)Google Scholar
  11. 11.
    Christodoulou, G., Kovács, A., Schapira, M.: Bayesian combinatorial auctions. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 820–832. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70575-8_67CrossRefGoogle Scholar
  12. 12.
    Cohen, I.R., Eden, A., Fiat, A., Jez, L.: Pricing online decisions: beyond auctions. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 73–91 (2015)Google Scholar
  13. 13.
    Cohen-Addad, V., Eden, A., Feldman, M., Fiat, A.: The invisible hand of dynamic market pricing. In: Proceedings of the 2016 ACM Conference on Economics and Computation, pp. 383–400 (2016)Google Scholar
  14. 14.
    Dütting, P., Feldman, M., Kesselheim, T., Lucier, B.: Posted prices, smoothness, and combinatorial prophet inequalities. In: Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science, pp. 540–551 (2017)Google Scholar
  15. 15.
    Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized second-price auction: selling billions of dollars worth of keywords. Am. Econ. Rev. 97(1), 242–259 (2007)CrossRefGoogle Scholar
  16. 16.
    Eden, A., Feige, U., Feldman, M.: Max-min greedy matching. arXiv preprint (2018). http://arxiv.org/abs/1803.05501
  17. 17.
    Eden, A., Feldman, M., Friedler, O., Talgam-Cohen, I., Weinberg, S.M.: A simple and approximately optimal mechanism for a buyer with complements. In: Proceedings of the 2017 ACM Conference on Economics and Computation, p. 323 (2017)Google Scholar
  18. 18.
    Ezra, T., Feldman, M., Roughgarden, T., Suksompong, W.: Pricing multi-unit markets. arXiv preprint (2018). http://arxiv.org/abs/1705.06623
  19. 19.
    Feige, U.: On maximizing welfare when utility functions are subadditive. SIAM J. Comput. 39(1), 122–142 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Feldman, M., Fu, H., Gravin, N., Lucier, B.: Simultaneous auctions are (almost) efficient. In: Proceedings of the 45th Symposium on Theory of Computing, pp. 201–210 (2013)Google Scholar
  21. 21.
    Feldman, M., Gravin, N., Lucier, B.: Combinatorial auctions via posted prices. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 123–135 (2015)Google Scholar
  22. 22.
    Friedman, M.: How to sell government securities. Wall Street J. A8 (1991)Google Scholar
  23. 23.
    Hajiaghayi, M.T., Kleinberg, R., Parkes, D.C.: Adaptive limited-supply online auctions. In: Proceedings of the 5th ACM Conference on Electronic Commerce, pp. 71–80 (2004)Google Scholar
  24. 24.
    Hassidim, A., Kaplan, H., Mansour, Y., Nisan, N.: Non-price equilibria in markets of discrete goods. In: Proceedings of the 12th ACM Conference on Electronic Commerce, pp. 295–296 (2011)Google Scholar
  25. 25.
    Kelso Jr., A.S., Crawford, V.P.: Job matching, coalition formation, and gross substitutes. Econometrica 50(6), 1483–1504 (1982)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55(2), 270–296 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lucier, B., Paes Leme, R.: GSP auctions with correlated types. In: Proceedings of the 12th ACM Conference on Electronic Commerce, pp. 71–80 (2011)Google Scholar
  28. 28.
    Lucier, B., Paes Leme, R., Tardos, É.: On revenue in the generalized second price auction. In: Proceedings of the 21st World Wide Web Conference, pp. 361–370 (2012)Google Scholar
  29. 29.
    Markakis, E., Telelis, O.: Uniform price auctions: equilibria and efficiency. Theory Comput. Syst. 57(3), 549–575 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Nisan, N.: Algorithmic mechanism design through the lens of multi-unit auctions, Chap. 9. In: Young, H.P., Zamir, S. (eds.) Handbook of Game Theory with Economic Applications, vol. 4, pp. 477–515. Elsevier (2015)Google Scholar
  31. 31.
    Paes Leme, R., Tardos, É: Pure and Bayes-Nash price of anarchy for generalized second price auction. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 735–744 (2010)Google Scholar
  32. 32.
    Parkes, D.C.: Online mechanisms, Chap. 16. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V. (eds.) Algorithmic Game Theory, pp. 411–439. Cambridge University Press (2007)Google Scholar
  33. 33.
    Ritter, J.: Google’s IPO, 10 years later (2014). http://www.forbes.com/sites/jayritter/2014/08/07/googles-ipo-10-years-later. Accessed 09 Feb 2017
  34. 34.
    Varian, H.R.: Position auctions. Int. J. Ind. Org. 25(6), 1163–1178 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tomer Ezra
    • 1
  • Michal Feldman
    • 1
  • Tim Roughgarden
    • 2
  • Warut Suksompong
    • 2
    Email author
  1. 1.Blavatnik School of Computer ScienceTel-Aviv UniversityTel AvivIsrael
  2. 2.Department of Computer ScienceStanford UniversityStanfordUSA

Personalised recommendations