Advertisement

Ordinal Approximation for Social Choice, Matching, and Facility Location Problems Given Candidate Positions

  • Elliot AnshelevichEmail author
  • Wennan ZhuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11316)

Abstract

In this work we consider general facility location and social choice problems, in which sets of agents \(\mathcal {A}\) and facilities \(\mathcal {F}\) are located in a metric space, and our goal is to assign agents to facilities (as well as choose which facilities to open) in order to optimize the social cost. We form new algorithms to do this in the presence of only ordinal information, i.e., when the true costs or distances from the agents to the facilities are unknown, and only the ordinal preferences of the agents for the facilities are available. The main difference between our work and previous work in this area is that while we assume that only ordinal information about agent preferences is known, we know the exact locations of the possible facilities \(\mathcal {F}\). Due to this extra information about the facilities, we are able to form powerful algorithms which have small distortion, i.e., perform almost as well as omniscient algorithms but use only ordinal information about agent preferences. For example, we present natural social choice mechanisms for choosing a single facility to open with distortion of at most 3 for minimizing both the total and the median social cost; this factor is provably the best possible. We analyze many general problems including matching, k-center, and k-median, and present black-box reductions from omniscient approximation algorithms with approximation factor \(\beta \) to ordinal algorithms with approximation factor \(1+2\beta \); doing this gives new ordinal algorithms for many important problems, and establishes a toolkit for analyzing such problems in the future.

Notes

Acknowledgements

We thank Onkar Bhardwaj for discussion of the lower bound example for the k-median problem. This work was partially supported by NSF award CCF-1527497.

References

  1. 1.
    Abramowitz, B., Anshelevich, E.: Utilitarians without utilities: maximizing social welfare for graph problems using only ordinal preferences. In: AAAI (2018)Google Scholar
  2. 2.
    Anshelevich, E., Bhardwaj, O., Postl, J.: Approximating optimal social choice under metric preferences. In: AAAI (2015)Google Scholar
  3. 3.
    Anshelevich, E., Postl, J.: Randomized social choice functions under metric preferences. In: IJCAI (2016)Google Scholar
  4. 4.
    Anshelevich, E., Sekar, S.: Blind, greedy, and random: algorithms for matching and clustering using only ordinal information. In: AAAI (2016)Google Scholar
  5. 5.
    Anshelevich, E., Sekar, S.: Truthful mechanisms for matching and clustering in an ordinal world. In: Cai, Y., Vetta, A. (eds.) WINE 2016. LNCS, vol. 10123, pp. 265–278. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-54110-4_19CrossRefzbMATHGoogle Scholar
  6. 6.
    Anshelevich, E., Zhu, W.: Tradeoffs between information and ordinal approximation for bipartite matching. In: Bilò, V., Flammini, M. (eds.) SAGT 2017. LNCS, vol. 10504, pp. 267–279. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66700-3_21CrossRefGoogle Scholar
  7. 7.
    Benade, G., Nath, S., Procaccia, A.D., Shah, N.: Preference elicitation for participatory budgeting. In: AAAI (2017)Google Scholar
  8. 8.
    Bhalgat, A., Chakrabarty, D., Khanna, S.: Social welfare in one-sided matching markets without money. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM -2011. LNCS, vol. 6845, pp. 87–98. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22935-0_8CrossRefGoogle Scholar
  9. 9.
    Bogomolnaia, A., Moulin, H.: Random matching under dichotomous preferences. Econometrica 72(1), 257–279 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Boutilier, C., Caragiannis, I., Haber, S., Lu, T., Procaccia, A.D., Sheffet, O.: Optimal social choice functions: a utilitarian view. Artif. Intell. 227, 190–213 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Byrka, ., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for k-median, and positive correlation in budgeted optimization. In: SODA (2014)Google Scholar
  12. 12.
    Caragiannis, I., Filos-Ratsikas, A., Frederiksen, S.K.S., Hansen, K.A., Tan, Z.: Truthful facility assignment with resource augmentation: an exact analysis of serial dictatorship. In: Cai, Y., Vetta, A. (eds.) WINE 2016. LNCS, vol. 10123, pp. 236–250. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-54110-4_17CrossRefGoogle Scholar
  13. 13.
    Caragiannis, I., Nath, S., Procaccia, A.D., Shah, N.: Subset selection via implicit utilitarian voting. J. Artif. Intell. Res. 58, 123–152 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cheng, Y., Dughmi, S., Kempe, D.: Of the people: voting is more effective with representative candidates. In: EC (2017)Google Scholar
  15. 15.
    Cheng, Y., Dughmi, S., Kempe, D.: On the distortion of voting with multiple representative candidates. In: AAAI (2018)Google Scholar
  16. 16.
    Christodoulou, G., Filos-Ratsikas, A., Frederiksen, S.K.S., Goldberg, P.W., Zhang, J., Zhang, J.: Social welfare in one-sided matching mechanisms. In: Osman, N., Sierra, C. (eds.) AAMAS 2016. LNCS (LNAI), vol. 10002, pp. 30–50. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46882-2_3CrossRefGoogle Scholar
  17. 17.
    Enelow, J.M., Hinich, M.J.: The Spatial Theory of Voting: An Introduction. Cambridge University Press, New York (1984)zbMATHGoogle Scholar
  18. 18.
    Fain, B., Goel, A., Munagala, K., Sakshuwong, S.: Sequential deliberation for social choice. In: Devanur, N.R., Lu, P. (eds.) WINE 2017. LNCS, vol. 10660, pp. 177–190. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71924-5_13CrossRefGoogle Scholar
  19. 19.
    Farahani, R.Z., Hekmatfar, M.: Facility Location: Concepts, Models, Algorithms and Case Studies. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-7908-2151-2CrossRefGoogle Scholar
  20. 20.
    Feldman, M., Fiat, A., Golomb, I.: On voting and facility location. In: EC (2016)Google Scholar
  21. 21.
    Filos-Ratsikas, A., Frederiksen, S.K.S., Zhang, J.: Social welfare in one-sided matchings: random priority and beyond. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 1–12. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44803-8_1CrossRefGoogle Scholar
  22. 22.
    Goel, A., Krishnaswamy, A.K., Munagala, K.: Metric distortion of social choice rules: lower bounds and fairness properties. In: EC (2017)Google Scholar
  23. 23.
    Gross, S., Anshelevich, E., Xia, L.: Vote until two of you agree: mechanisms with small distortion and sample complexity. In: AAAI (2017)Google Scholar
  24. 24.
    Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10(2), 180–184 (1985)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hoefer, M., Kodric, B.: Combinatorial secretary problems with ordinal information. In: ICALP (2017)Google Scholar
  26. 26.
    Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 77–88. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22012-8_5CrossRefGoogle Scholar
  27. 27.
    Procaccia, A.D., Rosenschein, J.S.: The distortion of cardinal preferences in voting. In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149, pp. 317–331. Springer, Heidelberg (2006).  https://doi.org/10.1007/11839354_23CrossRefGoogle Scholar
  28. 28.
    Skowron, P.K., Elkind, E.: Social choice under metric preferences: scoring rules and STV. In: AAAI (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations