Advertisement

Improving the Nutritional Value of Potatoes by Conventional Breeding and Genetic Modification

  • John E. Bradshaw
Chapter

Abstract

As the potato is a major food crop, improving the nutritional value of its tubers will contribute to the United Nations “2030 Agenda for Sustainable Development”, provided potato production is also increased. Realistic targets for conventional breeding are the following: ensuring tuber steroidal glycoalkaloids do not exceed 20 mg 100 g−1 fresh-weight; reducing acrylamide formation in crisps (chips) and French fries below benchmark levels of 750 and 500 μg kg−1, respectively; reducing glycaemic index by increasing the amount of resistant starch; increasing protein quantity and quality; and increasing the concentrations of the minerals iron and zinc and the vitamins B9 and C. Red-fleshed and purple-fleshed potatoes contain anthocyanins which are antioxidants and yellow-fleshed and orange-fleshed ones contain the carotenoids lutein and zeaxanthin which protect against macular eye degeneration. Genetic variation exists for all of these traits among modern cultivars and Andean landraces; but some traits lack rapid screens for use in breeding, and there are still issues over bioavailability of some nutrients. Genetic engineering can be used to control glycoalkaloid concentrations and acrylamide-forming potential; to increase dietary fibre through the introduction of inulins from globe artichoke; to increase protein quality and quantity by tuber-specific expression of a seed protein, Amaranth Albumin 1, from Amaranthus hypochondriacus; and to alter carotenoid biosynthesis to produce beta-carotene, the precursor of vitamin A (Golden Potatoes), or astaxanthin, a feed additive in aquaculture.

Keywords

Glycoalkaloids Acrylamide Glycaemic index Protein content Minerals Vitamins Anthocyanins Carotenoids 

References

  1. Akilen R, Deljoomanesh N, Hunschede S, Smith CE, Arshad MU, Kubant R, Anderson GH (2016) The effects of potatoes and other carbohydrate side dishes consumed with meat on food intake, glycemia and satiety response in children. Nutr Diabetes 6:e195.  https://doi.org/10.1038/nutd.2016.1 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akyol H, Riciputi Y, Capanoglu E, Caboni MF, Verardo V (2016) Phenolic compounds in the potato and its byproducts: an overview. Int J Mol Sci 17:835.  https://doi.org/10.3390/ijms17060835 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Ames M, Spooner DA (2008) DNA from herbarium specimens settles a controversy about origins of the European potato. Am J Bot 95:252–257PubMedCrossRefGoogle Scholar
  4. Amrein TM, Bachmann S, Noti A, Biedermann M, Barbosa MF, Biedermann-Brem S, Grob K, Keiser A, Realini P, Escher F, Amadò R (2003) Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems. J Agric Food Chem 51:5556–5560PubMedCrossRefGoogle Scholar
  5. Andre CM, Legay S, Iammarino C, Ziebel J, Guignard C, Larondelle Y, Hausman J-F, Evers D, Miranda LM (2014) The potato in the human diet: a complex matrix with potential health benefits. Potato Res 57:201–214CrossRefGoogle Scholar
  6. Andre CM, Evers D, Ziebel J, Guignard C, Hausman J-F, Bonierbale M, zum Felde T, Burgos G (2015) In vitro bioaccessibility and bioavailability of iron from potatoes with varying vitamin C, carotenoid, and phenolic concentrations. J Agric Food Chem 63:9012–9021.  https://doi.org/10.1021/acs.jafc.5b02904 CrossRefPubMedGoogle Scholar
  7. Bártová V, Bárta J, Brabcová A, Zdráhal Z, Horáčková V (2015) Amino acid composition and nutritional value of four cultivated South American potato species. J Food Compost Anal 40:78–85.  https://doi.org/10.1016/j.jfca.2014.12.006 CrossRefGoogle Scholar
  8. Birt DF, Boylston T, Hendrich S, Jane JL, Hollis J, Li L, McClelland J, Moore S, Phillips GJ, Rowling M, Schalinske K, Whitley EM (2013) Resistant starch: promise for improving human health. Adv Nutr 4:587–601PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103PubMedPubMedCentralGoogle Scholar
  10. Bonierbale M, Grüneberg W, Amoros W, Burgos G, Salas E, Porras E, zum Felde T (2009) Total and individual carotenoid profiles in Solanum phureja cultivated potatoes: II. Development and application of near-infrared reflectance spectroscopy (NIRS) calibrations for germplasm characterization. J Food Compost Anal 22:509–516CrossRefGoogle Scholar
  11. Borch D, Juul-Hindsgaul N, Veller M, Astrup A, Jaskolowski J, Raben A (2016) Potatoes and risk of obesity, type 2 diabetes, and cardiovascular disease in apparently healthy adults: a systematic review of clinical intervention and observational studies. Am J Clin Nutr 104:489–498.  https://doi.org/10.3945/ajcn.116.132332 CrossRefPubMedGoogle Scholar
  12. Bradshaw JE (2009) A genetic perspective on yield plateau in potato. Potato J 36:79–94Google Scholar
  13. Bradshaw JE (2016) Plant breeding: past, present and future. Springer, ChamCrossRefGoogle Scholar
  14. Bradshaw JE (2017) Review and analysis of limitations in ways to improve conventional potato breeding. Potato Res 60:171–193CrossRefGoogle Scholar
  15. Bradshaw JE, Bonierbale M (2010) Potatoes. In: Bradshaw JE (ed) Root and tuber crops, handbook of plant breeding 7. Springer, New York, NY, pp 1–52CrossRefGoogle Scholar
  16. Bradshaw JE, Hackett CA, Pande B, Waugh R, Bryan GJ (2008) QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet 116:193–211PubMedCrossRefGoogle Scholar
  17. Breithaupt DE, Bamedi A (2002) Carotenoids and carotenoid esters in potatoes (Solanum tuberosum L.): new insights into an ancient vegetable. J Agric Food Chem 50:7175–7181PubMedCrossRefGoogle Scholar
  18. Brown CR (1993) Outcrossing rate in cultivated autotetraploid potato. Am Potato J 70:725–734CrossRefGoogle Scholar
  19. Brown CR (2005) Antioxidants in potato. Am J Potato Res 82:163–172CrossRefGoogle Scholar
  20. Brown CR, Edwards CG, Yang CP, Dean BB (1993) Orange flesh trait in potato: inheritance and carotenoid content. J Am Soc Hortic Sci 118:145–150CrossRefGoogle Scholar
  21. Brown CR, Wrolstad R, Durst R, Yang CP, Clevidence B (2003) Breeding studies in potatoes containing high concentrations of anthocyanins. Am J Potato Res 80:241–250CrossRefGoogle Scholar
  22. Brown CR, Kim TS, Ganga Z, Haynes K, De Jong D, Jahn M, Paran I, De Jong W (2006) Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. Am J Potato Res 83:365–372CrossRefGoogle Scholar
  23. Brown CR, Haynes KG, Moore M, Pavek MJ, Hane DC, Love SL, Novy RG, Miller JC (2010) Stability and broad-sense heritability of mineral content in potato. Iron. Am J Potato Res 87:390–396.  https://doi.org/10.1007/s12230-010-9145-4 CrossRefGoogle Scholar
  24. Brown CR, Haynes KG, Moore M, Pavek MJ, Hane DC, Love SL, Novy RG, Miller JC (2011) Stability and broad-sense heritability of mineral content in potato. Zinc. Am J Potato Res 88:238–244.  https://doi.org/10.1007/s12230-011-9188-1 CrossRefGoogle Scholar
  25. Brown CR, Vales I, Yilma S, James S, Charlton B, Culp D, Hane D, Shock C, Feibert E, Pavek M, Knowles R, Novy R, Whitworth J, Stark J, Miller JC, Holm D, Quick R, Navarre R (2012a) “AmaRosa,” a red skinned, red fleshed fingerling with high phytonutrient value. Am J Pot Res 89:249–254.  https://doi.org/10.1007/s12230-012-9248-1 CrossRefGoogle Scholar
  26. Brown CR, Haynes KG, Moore M, Pavek MJ, Hane DC, Love SL, Novy RG, Miller JC (2012b) Stability and broad-sense heritability of mineral content in potato: calcium and magnesium. Am J Potato Res 89:255–261.  https://doi.org/10.1007/s12230-012-9240-9 CrossRefGoogle Scholar
  27. Brown CR, Haynes KG, Moore M, Pavek MJ, Hane DC, Love SL, Novy RG (2013) Stability and broad-sense heritability of mineral content in potato: potassium and phosphorus. Am J Potato Res 90:516–523CrossRefGoogle Scholar
  28. Brown CR, Haynes KG, Moore M, Pavek MJ, Hane DC, Love SL, Novy RG, Miller JC (2014) Stability and broad-sense heritability of mineral content in potato: copper and sulfur. Am J Potato Res 91:618–624CrossRefGoogle Scholar
  29. Burgos G, Amoros W, Morote M, Stangoulis J, Bonierbale M (2007) Iron and zinc concentration of native Andean potato cultivars from a human nutrition perspective. J Sci Food Agric 87:668–675.  https://doi.org/10.1002/jsfa.2765 CrossRefGoogle Scholar
  30. Burgos G, Salas E, Amoros W, Auqui M, Muñoa L, Kimura M, Bonierbale M (2009a) Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. J Food Compost Anal 22:503–508CrossRefGoogle Scholar
  31. Burgos G, Auqui S, Amoros W, Salas E, Bonierbale M (2009b) Ascorbic acid concentration of native Andean potato varieties as affected by environment, cooking and storage. J Food Compost Anal 22:533–538CrossRefGoogle Scholar
  32. Burgos G, Amoros W, Salas E, Muñoa L, Sosa P, Díaz C, Bonierbale M (2012) Carotenoid concentrations of native Andean potatoes as affected by cooking. Food Chem 133:1131–1137CrossRefGoogle Scholar
  33. Burgos G, Muñoa L, Sosa P, Bonierbale M, zum Felde T, Díaz C (2013) In vitro bioaccessibility of lutein and zeaxanthin of yellow fleshed boiled potatoes. Plant Foods Hum Nutr 68:385–390PubMedPubMedCentralCrossRefGoogle Scholar
  34. Burton WG (1989) The potato, 3rd edn. Longman Scientific and Technical, HarlowGoogle Scholar
  35. Campbell R, Pont SD, Morris JA, McKenzie G, Sharma SK, Hedley PE, Ramsay G, Bryan GJ, Taylor MA (2014) Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.). Theor Appl Genet 127:1917–1933PubMedCrossRefPubMedCentralGoogle Scholar
  36. Campbell R, Morris WL, Mortimer CL, Misawa N, Ducreux LJ, Morris JA, Hedley PE, Fraser PD, Taylor MA (2015) Optimising ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment. Plant Sci 234:27–37PubMedCrossRefPubMedCentralGoogle Scholar
  37. Carroll CP (1982) A mass-selection method for the acclimatization and improvement of edible diploid potatoes in the United Kingdom. J Agric Sci Camb 99:631–640CrossRefGoogle Scholar
  38. Carroll CP, De Maine MJ (1989) The agronomic value of tetraploid F1 hybrids between potatoes of group Tuberosum and group Phureja/Stenotomum. Potato Res 32:447–456CrossRefGoogle Scholar
  39. Chakraborty S, Chakraborty N, Agrawal L, Ghosh S, Narula K, Shekhar S, Naik PS, Pande PC, Chakrborti SK, Datta A (2010) Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc Natl Acad Sci U S A 107:17533–17538.  https://doi.org/10.1073/pnas.1006265107 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Chawla R, Shakya R, Rommens CM (2012) Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotechnol J 10:913–924PubMedCrossRefPubMedCentralGoogle Scholar
  41. Chitchumroonchokchai C, Diretto G, Parisi B, Giuliano G, Failla ML (2017) Potential of golden potatoes to improve vitamin A and vitamin E status in developing countries. PLoS One 12(11):e0187102.  https://doi.org/10.1371/journal.pone.0187102 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Cho K-S, Jeong H-J, Cho J-H, Park Y-E, Hong S-Y, Won H-S, Kim H-J (2013) Vitamin C content of potato clones from Korean breeding lines and compositional changes during growth and after storage. Hortic Environ Biotechnol 54:70–75CrossRefGoogle Scholar
  43. Chung YS, Palta P, Bamberg J, Jansky S (2016) Potential molecular markers associated with tuber calcium content in wild potato germplasm. Crop Sci 56:576–584CrossRefGoogle Scholar
  44. Colditz GA, Branch LG, Lipnick RJ, Willett WC, Rosner B, Posner BM, Hennekens CH (1985) Increased green and yellow vegetable intake and lowered cancer deaths in an elderly population. Am J Clin Nutr 41:32–36PubMedCrossRefPubMedCentralGoogle Scholar
  45. Dale MFB, Mackay GR (1994) Inheritance of table and processing quality. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 285–315Google Scholar
  46. Davies HV (2002) Commercial developments with transgenic potato. In: Valpuesta V (ed) Fruit and vegetable biotechnology. Woodhead Publishing Limited, Cambridge, pp 222–249CrossRefGoogle Scholar
  47. De Jong WS, De Jong DM, Bodis M (2003) A fluorogenic 5′ nuclease (TaqMan) assay to assess dosage of a marker tightly linked to red skin color in autotetraploid potato. Theor Appl Genet 107:1384–1390.  https://doi.org/10.1007/s00122-003-1420-z CrossRefPubMedPubMedCentralGoogle Scholar
  48. De Jong WS, Eannetta NT, De Jong DM, Bodis M (2004) Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theor Appl Genet 108:423–432.  https://doi.org/10.1007/s00122-003-1455-1 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G (2006) Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6:13.  https://doi.org/10.1186/1471-2229-6-13 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007a) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2(4):e350PubMedPubMedCentralCrossRefGoogle Scholar
  51. Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G (2007b) Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol 7:11.  https://doi.org/10.1186/1471-2229-7-11 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Dodds KS (1962) Classification of cultivated potatoes. In: Correll DS (ed) The potato and its wild relatives. Texas Research Foundation, Renner, TX, pp 517–539Google Scholar
  53. Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J Exp Bot 56:81–89PubMedPubMedCentralGoogle Scholar
  54. Ek KL, Wang S, Copeland L, Brand-Miller JC (2014a) Discovery of a low-glycaemic index potato and relationship with starch digestion in vitro. Br J Nutr 111:699–705PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ek KL, Wang S, Brand-Miller JC, Copeland L (2014b) Properties of starch from potatoes differing in glycemic index. Food Funct 10:2509–2515Google Scholar
  56. Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50PubMedPubMedCentralGoogle Scholar
  57. Ezekiel R, Singh N, Sharma S, Kaur A (2013) Beneficial phytochemicals in potato – a review. Food Res Int 50:487–496CrossRefGoogle Scholar
  58. Fairweather-Tait S (1983) Studies on the availability of iron in potatoes. Br J Nutr 50:15–23PubMedCrossRefPubMedCentralGoogle Scholar
  59. Foster-Powell K, Holt SHA, Brand-Miller JC (2002) International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 76:5–56PubMedCrossRefGoogle Scholar
  60. Friedman M (1996) Nutritional value of proteins from different food sources. A review. J Agric Food Chem 44:6–29CrossRefGoogle Scholar
  61. Friedman M, Levin CE (2016) Glycoalkaloids and calystegine alkaloids in potatoes. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology, 2nd edn. Elsevier, Amsterdam, pp 167–194CrossRefGoogle Scholar
  62. Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132CrossRefGoogle Scholar
  63. Galdón BR, Mesa DR, Rodríguez EMR, Romero CD (2010) Amino acid content in traditional potato cultivars from the Canary Islands. J Food Compost Anal 23:148–153.  https://doi.org/10.1016/j.jfca.2009.08.009 CrossRefGoogle Scholar
  64. Gaziano GM, Manson JE, Branch LG, Colditz GA, Willett WC, Buring JE (1995) A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in the elderly. Ann Epidemiol 5:255–260PubMedCrossRefGoogle Scholar
  65. Goodrich CE (1863) The origination and test culture of seedling potatoes. Trans NY State Agric Soc 23:89–134Google Scholar
  66. Goyer A, Navarre DA (2007) Determination of folate concentrations in diverse potato germplasm using a trienzyme extraction and a microbiological assay. J Agric Food Chem 55:3523–3528PubMedCrossRefGoogle Scholar
  67. Goyer A, Navarre DA (2009) Folate is higher in developmentally younger potato tubers. J Sci Food Agric 89:579–583CrossRefGoogle Scholar
  68. Goyer A, Sweek K (2011) Genetic diversity of thiamin and folate in primitive cultivated and wild potato (Solanum) species. J Agric Food Chem 59:13072–13080.  https://doi.org/10.1021/jf203736e CrossRefPubMedGoogle Scholar
  69. Hammond BR, Johnson EJ, Russell RM, Krinsky NI, Yeum KJ, Edwards RB, Snodderly DM (1997) Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci 38:1795–1801PubMedGoogle Scholar
  70. Hawkes JG (1990) The potato: evolution, biodiversity & genetic resources. Belhaven Press, LondonGoogle Scholar
  71. Haynes KG (2000) Inheritance of yellow-flesh intensity in diploid potatoes. J Am Soc Hortic Sci 125:63–65CrossRefGoogle Scholar
  72. Haynes KG, Potts WE, Chittams JL, Fleck DL (1994) Determining yellow-flesh intensity in potatoes. J Am Soc Hortic Sci 119:1057–1059CrossRefGoogle Scholar
  73. Haynes KG, Sieczka JB, Henninger MR, Fleck DL (1996) Clone × environment interactions for yellow-flesh intensity in tetraploid potatoes. J Am Soc Hortic Sci 121:175–177CrossRefGoogle Scholar
  74. Haynes KG, Clevidence BA, Rao D, Vinyard BT (2011) Inheritance of carotenoid content in tetraploid × diploid potato crosses. J Am Soc Hortic Sci 136:265–272CrossRefGoogle Scholar
  75. Haynes K, Yencho G, Clough M, Henninger M, Sterrett S (2012) Genetic variation for potato tuber micronutrient content and implications for biofortification of potatoes to reduce micronutrient malnutrition. Am J Potato Res 89:192–198CrossRefGoogle Scholar
  76. Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesise the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus). Proc Natl Acad Sci U S A 97:8699–8704PubMedPubMedCentralCrossRefGoogle Scholar
  77. Henry CJK, Lightowler H, Strik C, Storey M (2005) Glycaemic index values for commercially available potatoes in Great Britain. Br J Nutr 94:917–921CrossRefPubMedGoogle Scholar
  78. Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hosaka K (2004) Evolutionary pathway of T-type chloroplast DNA in potato. Am J Potato Res 81:153–158CrossRefGoogle Scholar
  80. Hougas RW, Peloquin SJ, Ross RW (1958) Haploids of the common potato. J Hered 49:103–107CrossRefGoogle Scholar
  81. Huaman Z, Golmirzaie A, Amoros W (1997.) The potato) In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in trust: conservation and use of plant genetic resources in CGIAR centres. Cambridge University Press, Cambridge, UK, pp 21–28CrossRefGoogle Scholar
  82. Huaman Z, Hoekstra R, Bamberg JB (2000a) The inter-genebank potato database and the dimensions of available wild potato germplasm. Am J Potato Res 77:353–362CrossRefGoogle Scholar
  83. Huaman Z, Ortiz R, Gomez R (2000b) Selecting a Solanum tuberosum subsp. andigena core collection using morphological, geographical, disease and pest descriptors. Am J Potato Res 77:183–190CrossRefGoogle Scholar
  84. Huaman Z, Ortiz R, Zhang D, Rodriguez F (2000c) Isozyme analysis of entire and core collections of Solanum tuberosum subsp. andigena potato cultivars. Crop Sci 40:273–276CrossRefGoogle Scholar
  85. Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky S, Finkers R, Tikunov Y (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341:175–179PubMedCrossRefGoogle Scholar
  86. Jansky S (2009) Breeding, genetics and cultivar development. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic, Burlington, pp 27–62CrossRefGoogle Scholar
  87. Johns T, Alonso JG (1990) Glycoalkaloid change during the domestication of the potato, Solanum Section Petota. Euphytica 50:203–210CrossRefGoogle Scholar
  88. Juhaszi Z, Dancs G, Marincs F, Vossen M, Allefs S, Banfalvi Z (2014) Vitamin C, B5, and B6 contents of segregating potato populations detected by GC-MS: a method facilitating breeding potatoes with improved vitamin content. Plant Breed 133:515–520.  https://doi.org/10.1111/pbr.12169 CrossRefGoogle Scholar
  89. Jung CS, Griffiths HM, De Jong DM, Cheng S, Bodis M, De Jong WS (2005) The potato P locus codes for flavonoid 3′,5′–hydroxylase. Theor Appl Genet 110:269–275PubMedCrossRefGoogle Scholar
  90. Jung CS, Griffiths HM, De Jong DM, Cheng S, Bodis M, Kim TS, De Jong WS (2009) The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor Appl Genet 120:45–57PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kaminski KP, Kørup K, Andersen MN, Sønderkær M, Andersen MS, Kirk HG, Nielsen KL (2016) Next generation sequencing bulk segregant analysis of potato support that differential flux into the cholesterol and stigmasterol metabolite pools is important for steroidal glycoalkaloid content. Potato Res 59:81–97.  https://doi.org/10.1007/s11540-015-9314-4 CrossRefGoogle Scholar
  92. Kaspar KL, Park JS, Brown CR, Mathison BD, Navarre DA, Chew BP (2011) Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J Nutr 141:108–111PubMedCrossRefGoogle Scholar
  93. Kirkman MA (2007) Global markets for processed potato products. In: Vreugdenhil D (ed) Potato biology and biotechnology advances and perspectives. Elsevier, Oxford, pp 27–44CrossRefGoogle Scholar
  94. Knight TA (1807) On raising of new and early varieties of the potato (Solanum tuberosum). Trans Hort Soc Lond 1:57–59Google Scholar
  95. Kobayashi A, Ohara-Takada A, Tsuda S, Matsuura-Endo C, Takada N, Umemura Y, Nakao T, Yoshida T, Hayashi K, Mori M (2008) Breeding of potato variety “Inca-no-hitomi” with a very high carotenoid content. Breed Sci 58:77–82CrossRefGoogle Scholar
  96. Kromann P, Valverde F, Alvarado S, Vélez R, Pisuña J, Potosí B, Taipe A, Caballero D, Cabezas A, Devaux A (2017) Can Andean potatoes be agronomically biofortified with iron and zinc fertilizers? Plant Soil 411:121–138.  https://doi.org/10.1007/s11104-016-3065-0 CrossRefGoogle Scholar
  97. Lachman J, Hamouz K, Orsák M, Kotíková Z (2016) Carotenoids in potatoes—a short overview. Plant Soil Environ 62:474–481CrossRefGoogle Scholar
  98. Lewis CE, Walker JRL, Lancaster JE, Sutton KH (1998a) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: coloured cultivars of Solanum tuberosum L. J Sci Food Agric 77:45–57CrossRefGoogle Scholar
  99. Lewis CE, Walker JRL, Lancaster JE, Sutton KH (1998b) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. II: wild, tuberous Solanum species. J Sci Food Agric 77:58–63CrossRefGoogle Scholar
  100. Li X-Q, Scanlon MG, Liu Q, Coleman WK (2006.) Processing and value addition) In: Gopal J, Khurana SMP (eds) Handbook of potato production, improvement, and postharvest management. Food Products Press, New York, pp 523–555Google Scholar
  101. Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, van Eck HJ (2011) Towards F1 hybrid seed potato breeding. Potato Res 54:301–312CrossRefGoogle Scholar
  102. Lockyer S, Nugent AP (2017) Health effects of resistant starch. Nutr Bull 42:10–41CrossRefGoogle Scholar
  103. Louderback LA, Pavlik BM (2017) Starch granule evidence for the earliest potato use in North America. Proc Natl Acad Sci U S A 114:7606–7610.  https://doi.org/10.1073/pnas.1705540114 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Love SL, Pavek JJ (2008) Positioning the potato as a primary food source of vitamin C. Am J Potato Res 85:277–285CrossRefGoogle Scholar
  105. Lu W, Haynes K, Wiley E, Clevidence B (2001) Carotenoid content and color in diploid potatoes. J Am Soc Hortic Sci 126:722–726CrossRefGoogle Scholar
  106. Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–3605PubMedPubMedCentralCrossRefGoogle Scholar
  107. Macdonald-Clarke CJ, Martin BR, McCabe LD, McCabe GP, Lachcik PJ, Wastney M, Weaver CM (2016) Bioavailability of potassium from potatoes and potassium gluconate: a randomized dose response trial. Am J Clin Nutr 104:346–353.  https://doi.org/10.3945/ajcn.115.127225 CrossRefPubMedGoogle Scholar
  108. Mahfouz MM, Cardi T, Stewart CN (2016) Next-generation precision genome engineering and plant biotechnology. Plant Cell Rep 35:1397–1399.  https://doi.org/10.1007/s00299-016-2009-8 CrossRefPubMedGoogle Scholar
  109. Monro J, Mishra S (2009) Nutritional value of potatoes: digestibility, glycemic index, and glycemic impact. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic, Burlington, pp 371–394CrossRefGoogle Scholar
  110. Monro J, Mishra S, Blandford E, Anderson J, Genet R (2009) Potato genotype differences in nutritionally distinct starch fractions after cooking, and cooking plus storing cool. J Food Compost Anal 22:539–545CrossRefGoogle Scholar
  111. Morris WL, Ducreux L, Griffiths DW, Stewart D, Davies HV, Taylor MA (2004) Carotenogenesis during tuber development and storage in potato. J Exp Bot 55:975–982.  https://doi.org/10.1093/jxb/erh121 CrossRefPubMedGoogle Scholar
  112. Morris WL, Ducreux LJM, Fraser PD, Millam S, Taylor MA (2006) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8:253–263PubMedCrossRefGoogle Scholar
  113. Moseley ME (2001) The incas and their ancestors: the archaeology of Peru, 2nd edn. Thames and Hudson, LondonGoogle Scholar
  114. Muttucumaru N, Powers SJ, Elmore JS, Mottram DS, Halford NG (2013) Effects of nitrogen and sulfur fertilization on free amino acids, sugars, and acrylamide-forming potential in potato. J Agric Food Chem 61:6734–6742.  https://doi.org/10.1021/jf401570x CrossRefPubMedPubMedCentralGoogle Scholar
  115. Muttucumaru N, Powers SJ, Elmore JS, Dodson A, Briddon A, Mottram DS, Halford NG (2017) Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation. Food Chem 220:76–86PubMedPubMedCentralCrossRefGoogle Scholar
  116. Nassar AMK, Sabally K, Kubow S, Leclerc YN, Donnelly DJ (2012) Some Canadian-grown potato cultivars contribute to a substantial content of essential dietary minerals. J Agric Food Chem 60:4688–4696PubMedCrossRefGoogle Scholar
  117. Navarre DA, Shakya R, Hellman H (2016) Vitamins, phytonutrients, and minerals in potato. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology, 2nd edn. Elsevier, Amsterdam, pp 117–166CrossRefGoogle Scholar
  118. Nayak B, Berrios JDJ, Tang J (2014) Impact of food processing on the glycemic index (GI) of potato products. Food Res Int 56:35–46CrossRefGoogle Scholar
  119. Novy RG, Whitworth JL, Stark JC, Schneider BL, Knowles NR, Pavek MJ, Knowles LO, Charlton BA, Sathuvalli V, Yilma S, Brown CR, Thornton M, Brandt TL, Olsen N (2017) Payette Russet: a dual-purpose potato cultivar with cold-sweetening resistance, low acrylamide formation, and resistance to late blight and potato virus Y. Am J Potato Res 94:38–53CrossRefGoogle Scholar
  120. Orozco RF, Gallardo-Guerrero L, Hornero-Mendez D (2013) Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification. Food Chem 141:2864–2872.  https://doi.org/10.1016/j.foodchem.2013.05.016 CrossRefGoogle Scholar
  121. Ortiz R (2001) The state of the use of potato genetic diversity. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CAB International, Wallingford, pp 181–200CrossRefGoogle Scholar
  122. Paget M, Amoros W, Salas E, Eyzaguirre R, Alspach P, Apiolaza L, Noble A, Bonierbale M (2014) Genetic evaluation of micronutrient traits in diploid potato from a base population of Andean Landrace Cultivars. Crop Sci 54:1949–1959CrossRefGoogle Scholar
  123. Pedreschi F (2009) Fried and dehydrated potato products. In: Singh J, Kaur L (eds) Adavances in potato chemistry and technology. Academic, Burlington, pp 319–337CrossRefGoogle Scholar
  124. Pęksa A, Kita A, Kułakowska K, Aniołowska M, Hamouz K, Nemś A (2013) The quality of protein of coloured fleshed potatoes. Food Chem 141:2960–2966.  https://doi.org/10.1016/j.foodchem.2013.05.125 CrossRefPubMedGoogle Scholar
  125. Pieterse L, Hils U (2009) World catalogue of potato varieties 2009/10. Agrimedia GmbH, ClenzeGoogle Scholar
  126. Pinhero RG, Coffin R, Yada RY (2009) Post-harvest storage of potatoes. In: Singh J, Kaur L (eds) Adavances in potato chemistry and technology. Academic, Burlington, pp 339–370CrossRefGoogle Scholar
  127. Pinhero RG, Waduge RN, Liu Q, Sullivan JA, Tsao R, Bizimungu B, Yada RY (2016) Evaluation of nutritional profiles of starch and dry matter from early potato varieties and its estimated glycemic impact. Food Chem 203:356–366PubMedCrossRefGoogle Scholar
  128. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  129. Raatz SK, Idso L, Johnson LK, Jackson MI, Combs GF Jr (2016) Resistant starch analysis of commonly consumed potatoes: content varies by cooking method and service temperature but not by variety. Food Chem 208:297–300PubMedCrossRefGoogle Scholar
  130. Raker CM, Spooner DM (2002) Chilean tetraploid cultivated potato, Solanum tuberosum, is distinct from the Andean populations: microsatellite data. Crop Sci 42:1451–1458CrossRefGoogle Scholar
  131. Ramdath DD, Padhi E, Hawke A, Sivaramalingam T, Tsao R (2014) The glycemic index of pigmented potatoes is related to their polyphenol content. Food Funct 5:909–915PubMedCrossRefPubMedCentralGoogle Scholar
  132. Reader J (2008) Propitious esculent. William Heinemann, LondonGoogle Scholar
  133. Reyes LF, Miller JC, Cisneros-Zevallos L (2005) Antioxidant capacity, anthocyanins and total phenolics in purple-and red-fleshed potato (Solanum tuberosum L.) genotypes. Am J Potato Res 82:271–277CrossRefGoogle Scholar
  134. Robinson BR, Sathuvalli V, Bamberg J, Goyer A (2015) Exploring folate diversity in wild and primitive potatoes for modern crop improvement. Genes 6:1300–1314.  https://doi.org/10.3390/genes6041300 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272.  https://doi.org/10.1006/mben.2002.0234 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Rommens CM, Ye J, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54:9882–9887PubMedCrossRefPubMedCentralGoogle Scholar
  137. Rommens CM, Yan H, Swords K, Richael C, Ye J (2008) Low-acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853PubMedPubMedCentralCrossRefGoogle Scholar
  138. Sakamoto Y, Mori K, Matsuo Y, Mukojima N, Watanabe W, Sobaru N, Tamiya S, Nakao T, Hayashi K, Watanuki H, Nara K, Yamazaki K, Chaya M (2017) Breeding of a new potato variety ‘Nagasaki Kogane’ with high eating quality, high carotenoid content, and resistance to diseases and pests. Breed Sci.  https://doi.org/10.1270/jsbbs.16168 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Salaman RN (1910) The inheritance of colour and other characters in the potato. J Genet 1:7–46CrossRefGoogle Scholar
  140. Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci 6:14–17PubMedCrossRefPubMedCentralGoogle Scholar
  141. Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774PubMedPubMedCentralCrossRefGoogle Scholar
  142. Shepherd LVT, Bradshaw JE, Dale MFB, McNicol JW, Pont SDA, Mottram DS, Davies HV (2010) Variation in acrylamide producing potential in potato: segregation of the trait in a breeding population. Food Chem 123:568–573CrossRefGoogle Scholar
  143. Shepherd LVT, Hackett CA, Alexander CJ, McNicol JW, Sungurtas JA, Stewart D, McCue KF, Belknap WR, Davies HV (2015) Modifying glycoalkaloid content in transgenic potato—metabolome impacts. Food Chem 187:437–443PubMedCrossRefGoogle Scholar
  144. Simmonds NW (1995) Potatoes. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific & Technical, Harlow, pp 466–471Google Scholar
  145. Sinden SL, Sanford LL, Webb RE (1984) Genetic and environmental control of potato glycoalkaloids. Am Potato J 61:141–156CrossRefGoogle Scholar
  146. Singh J, Kaur L (2016) Advances in potato chemistry and technology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  147. Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62(Suppl):1448–1461CrossRefGoogle Scholar
  148. Spooner DM (2016) Species delimitations in plants: lessons learned from potato taxonomy by a practicing taxonomist. J Syst Evol 54:191–203CrossRefGoogle Scholar
  149. Spooner DM, Hijmans RJ (2001) Potato systematics and germplasm collecting, 1989–2000. Am J Potato Res 78:237–268CrossRefGoogle Scholar
  150. Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A 102:14694–14699PubMedPubMedCentralCrossRefGoogle Scholar
  151. Spooner DM, Nunez J, Trujillo G, Herrera M, Guzman F, Ghislain M (2007) Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc Natl Acad Sci U S A 104:19398–19404PubMedPubMedCentralCrossRefGoogle Scholar
  152. Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80:283–383CrossRefGoogle Scholar
  153. Storey M, Anderson P (2014) Income and race/ethnicity influence dietary fiber intake and vegetable consumption. Nutr Res 34:844–850PubMedCrossRefPubMedCentralGoogle Scholar
  154. Subramanian NK, White PJ, Broadly MR, Ramsay G (2017) Variation in tuber mineral concentrations among accessions of Solanum species held in the Commonwealth potato collection. Genet Resour Crop Evol 64:1927–1935CrossRefGoogle Scholar
  155. Sulli M, Mandolino G, Sturaro M, Onofri C, Diretto G, Parisi B, Giuliano G (2017) Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS One 12(9):e0184143.  https://doi.org/10.1371/journal.pone.0184143 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Tian J, Chen J, Ye X, Chen S (2016) Health benefits of the potato affected by domestic cooking: a review. Food Chem 202:165–175PubMedCrossRefPubMedCentralGoogle Scholar
  157. Tierno R, Hornero-Méndez D, Gallardo-Guerrero L, López-Pardo R, Ruiz de Gallareta JI (2015) Effect of boiling on the total phenolic, anthocyanin and carotenoid concentrations of potato tubers from selected cultivars and introgressed breeding lines from native potato species. J Food Compost Anal 41:58–65CrossRefGoogle Scholar
  158. Ugent D, Dillehay T, Ramirez C (1987) Potato remains from a late Pleistocene settlement in south central Chile. Econ Bot 4:17–27CrossRefGoogle Scholar
  159. Umemoto N, Nakayasu M, Ohyama K, Yotsu-Yamashita M, Mizutani M, Seki H, Saito K, Muranaka T (2016) Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiol 171:2458–2467PubMedPubMedCentralGoogle Scholar
  160. van Eck HJ (2007) Genetics of morphological and tuber traits. In: Vreugdenhil D (ed) Potato biology and biotechnology advances and perspectives. Elsevier, Oxford, pp 91–115Google Scholar
  161. Van Gelder WMJ, Vinket JH, Scheffer JJC (1988) Steroidal glycoalkaloids in tubers and leaves of Solanum species used in potato breeding. Euphytica 39:147–158CrossRefGoogle Scholar
  162. Vales MI, Brown CR, Yilma S, Hane DC, James SR, Shock CC, Charlton BA, Karaagac E, Mosley AR, Culp D, Feibert E, Stark JC, Pavek MJ, Knowles NR, Novy RG, Whitworth JL (2012) Purple Pelisse: a specialty ‘fingerling’ potato with purple skin and flesh and medium specific gravity. Am J Potato Res 89:306–314CrossRefGoogle Scholar
  163. Wheeler RM (2009) Potatoes for human life support in space. In: Singh J, Kaur L (eds) Adavances in potato chemistry and technology. Academic, Burlington, pp 465–495CrossRefGoogle Scholar
  164. White PJ, Bradshaw JE, Dale MFB, Ramsay G, Hammond JP, Broadley MR (2009) Relationships between yield and mineral concentrations in potato tubers. Hort Sci 44:6–11Google Scholar
  165. White PJ, Broadley MR, Hammond JP, Ramsay G, Subramanian NK, Thompson J, Wright G (2012) Bio-fortifcation of potato tubers using foliar zinc-fertiliser. J Hortic Sci Biotechnol 87:123–129CrossRefGoogle Scholar
  166. White PJ, Thompson JA, Wright G, Rasmussen SK (2017) Biofortifying Scottish potatoes with zinc. Plant Soil 411:151–165.  https://doi.org/10.1007/s11104-016-2903-4 CrossRefGoogle Scholar
  167. Wolters AMA, Uitdewilligen JGAML, Kloosterman BA, Hutten RCB, Visser RGF, van Eck HJ (2010) Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Mol Biol 73:659–671.  https://doi.org/10.1007/s11103-010-9647-y CrossRefPubMedPubMedCentralGoogle Scholar
  168. Zhang Y, Cheng S, De Jong D, Griffiths H, Halitschke R, De Jong W (2009a) The potato R locus codes for dihydroflavonol 4-reductase. Theor Appl Genet 119:931–937PubMedPubMedCentralCrossRefGoogle Scholar
  169. Zhang Y, Jung CS, De Jong WS (2009b) Genetic analysis of pigmented tuber flesh in potato. Theor Appl Genet 119:143–150PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zitnak A, Johnston GR (1970) Glycoalkaloid content of B5141-6 potatoes. Am Potato J 47:256–260CrossRefGoogle Scholar
  171. Zorrilla C, Navarro F, Vega S, Bamberg J, Palta J (2014) Identification and selection for tuber calcium, internal quality and pitted scab in segregating ‘Atlantic’ × ‘Superior’ reciprocal tetraploid populations. Am J Potato Res 91:673–687CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • John E. Bradshaw
    • 1
  1. 1.Retired Plant Breeder and GeneticistJames Hutton InstituteDundeeUK

Personalised recommendations