Advertisement

Breast Disease pp 201-220 | Cite as

Pathology of Breast Cancer

  • Sitki Tuzlali
Chapter

Abstract

In this chapter, pathological features of breast carcinoma are discussed. Classification is based on the recent WHO classification of breast carcinoma, and specific gross and microscopic features of in situ and invasive breast carcinomas are explained. Morphological groups, grading of DCIS, and the necessary information that should be in a surgical pathology report are discussed. Recent information about columnar cell lesions and flat epithelial atypia of the breast are discussed, along with their clinical importance. Atypical lobular hyperplasia and lobular carcinoma in situ (LCIS) are discussed under the heading “lobular neoplasia.” Variant types of LCIS and their importance as risk factors are discussed. Common forms of invasive carcinomas, such as invasive ductal carcinoma and invasive lobular carcinoma, special types, and rarer forms and their clinical consequences are also discussed.

Keywords

Breast Breast cancer Breast carcinoma Ductal carcinoma in situ Invasive ductal carcinoma Lobular carcinoma Tubular carcinoma Cribriform carcinoma Mucinous carcinoma Medullary carcinoma Papillary carcinoma 

References

  1. 1.
    Ellis IO. Intraductal proliferative lesions of the breast: morphology, associated risk and molecular biology. Mod Pathol. 2010;23(Suppl 2):S1–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Pinder SE. Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod Pathol. 2010;23:S8–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ. World health organization classification of tumors, WHO classification of tumors of the breast. 2nd ed. Lyon: IARC; 2012.Google Scholar
  4. 4.
    Lester SC, Bose S, Chen YY, Connolly JL, de Baca ME, Fitzgibbons PL, et al. Protocol for the examination of specimens from patients with ductal carcinoma in situ of the breast. Arch Pathol Lab Med. 2009;133(1):15–25.PubMedGoogle Scholar
  5. 5.
    Consensus conference on the classification of ductal carcinoma in situ. Hum Pathol. 1997;28:1221–5.Google Scholar
  6. 6.
    Schwartz GF, Solin LJ, Olivotto IA, Ernster VL, Pressman P. The consensus conference on the treatment of in situ ductal carcinoma of the breast, 22–25 April 1999. Breast. 2000;9:177–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Holland R, Peterse JL, Millis RR, Eusebi V, Faverly D, van de Vijver MJ, et al. Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol. 1994;11(3):167–80.PubMedGoogle Scholar
  8. 8.
    Sarrio D, Perez-Mies B, Hardisson D, et al. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene. 2004;23:3272–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Page DL, Dupont WD, Rogers LW, Rados MS. Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer. 1985;55:2698–708.PubMedCrossRefGoogle Scholar
  10. 10.
    Tavassoli FA, Norris HJ. A comparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer. 1990;65(3):518–29.PubMedCrossRefGoogle Scholar
  11. 11.
    Schnitt SJ, Vincent-Salomon A. Columnar cell lesions of the breast. Adv Anat Pathol. 2003;10:113e2.CrossRefGoogle Scholar
  12. 12.
    Schnitt SJ. Clinging carcinoma: an American perspective. Semin Diagn Pathol. 2010;27(1):31–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Aroner SA, Collins LC, Schnitt SJ, Connolly JL, Colditz GA, Tamimi RM. Columnar cell lesions and subsequent breast cancer risk: a nested case–control study. Breast Cancer Res. 2010;12(4):R61.  https://doi.org/10.1186/bcr2624.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wen HY, Brogi E. Lobular carcinoma in situ. Surg Pathol. 2018;11:123–45.CrossRefGoogle Scholar
  15. 15.
    Eusebi V, Magalhaes F, Azzopardi JG. Pleomorphic lobular carcinoma of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol. 1992;23:655–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Fadare O, Dadmanesh F, Varado-Cabrero I, et al. Lobular intraepithelial neoplasia [lobular carcinoma in situ] with comedo-type necrosis: a clinicopathologic study of 18 cases. Am J Surg Pathol. 2006;30:1445–53.PubMedCrossRefGoogle Scholar
  17. 17.
    O’Malley FP. Lobular neoplasia: morphology, biological potential and management in core biopsies. Mod Pathol. 2010;23:S14–25.  https://doi.org/10.1038/modpathol.2010.35.CrossRefPubMedGoogle Scholar
  18. 18.
    Page DL, Schuyler PA, Dupont WD, Jensen RA, Plummer WD Jr, Simpson JF. Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet. 2003;361:125–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, Marchió C, Reis-Filho JS. Breast cancer precursors revisited: molecular features and progression pathways. Histopathology. 2010;57(2):171–92.  https://doi.org/10.1111/j.1365-2559.2010.03568.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Amin MB, Edge SB. AJCC cancer staging manual. 8th ed. New York: Springer; 2017.CrossRefGoogle Scholar
  21. 21.
    Giuliano AE, Connoly JL, Edge SB, Mittendorf EA, Rugo HS, et al. Breast Cancer—major changes in the American joint committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(4):290–303.  https://doi.org/10.3322/caac.21393.CrossRefPubMedGoogle Scholar
  22. 22.
    Schmidt H, Arditi B, Wooster M, Weltz C, et al. Observation versus excision of lobular neoplasia on core needle biopsy of the breast. Breast Cancer Res Treat. 2018;168(3):649–54.  https://doi.org/10.1007/s10549-017-4629-2.CrossRefPubMedGoogle Scholar
  23. 23.
    Fasola CE, Chen JJ, Jensen KC, Allison KH, et al. Characteristics and clinical outcomes of pleomorphic lobular carcinoma in situ of the breast. Breast J. 2018;24(1):66–9.  https://doi.org/10.1111/tbj.12843.CrossRefPubMedGoogle Scholar
  24. 24.
    Bagaria SP, Shamonki J, Kinnaird M, Ray PS, Giuliano AE. The florid subtype of lobular carcinoma in situ: marker or precursor for invasive lobular carcinoma? Ann Surg Oncol. 2011;18(7):1845–51.  https://doi.org/10.1245/s10434-011-1563-0.CrossRefPubMedGoogle Scholar
  25. 25.
    Shin SJ, Lal A, De Vries S, Suzuki J, Roy R, Hwang ES, et al. Florid lobular carcinoma in situ: molecular profiling and comparison to classic lobular carcinoma in situ and pleomorphic lobular carcinoma in situ. Hum Pathol. 2013;44(10):1998–2009.PubMedCrossRefGoogle Scholar
  26. 26.
    Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A III. American Joint Committee on Cancer (AJCC) cancer staging manual. 7th ed. New York: Springer; 2010.Google Scholar
  27. 27.
    Prasad ML, Osborne MP, Giri DD, Hoda SA. Microinvasive carcinoma (T1mic) of the breast: clinicopathologic profile of 21 cases. Am J Surg Pathol. 2000;24(3):422–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Rosai J. Breast. In: Rosai and Ackerman’s surgical pathology. 9th ed. New York: Mosby; 2004. p. 1763–876.Google Scholar
  29. 29.
    Silver SA, Tavassoli FA. Pleomorphic carcinoma of the breast: clinicopathological analysis of 26 cases of an unusual high-grade phenotype of ductal carcinoma. Histopathology. 2000;36(6):505–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Nguyen CV, Falcón-Escobedo R, Hunt KK, Nayeemuddin KM, Lester TR, Harrell RK, et al. Pleomorphic ductal carcinoma of the breast: predictors of decreased overall survival. Am J Surg Pathol. 2010;34(4):486–93.  https://doi.org/10.1097/PAS.0b013e3181ce97bf.CrossRefPubMedGoogle Scholar
  31. 31.
    Tavassoli FA, Norris HJ. Breast carcinoma with osteoclastlike giant cells. Arch Pathol Lab Med. 1986;110(7):636–9.PubMedGoogle Scholar
  32. 32.
    Rosen PP. Rosen’s breast pathology. 3rd ed. Philadelphia: Lippincott Williams & Wolters Kluwer business; 2009.Google Scholar
  33. 33.
    Tavassoli FA, Eusebi V. Tumors of the mammary gland. AFIP atlas of tumor pathology. Fourth series; fasc 10. Washington, DC: American Registry of Pathology in collaboration with the Armed Institute of Pathology; 2009.Google Scholar
  34. 34.
    Athanasou NA, Wells CA, Quinn J, Ferguson DP, Heryet A, McGee JO. The origin and nature of stromal osteoclast-like multinucleated giant cells in breast carcinoma: implications for tumour osteolysis and macrophage biology. Br J Cancer. 1989;59(4):491–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shishido-Hara Y, Kurata A, Fujiwara M, Itoh H, Imoto S, Kamma H. Two cases of breast carcinoma with osteoclastic giant cells: are the osteoclastic giant cells pro-tumoural differentiation of macrophages? Diagn Pathol. 2010;5:55.  https://doi.org/10.1186/1746-1596-5-55.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhou S, Yu L, Zhou R, Yang W. Invasive breast carcinomas of no special type with osteoclast-like giant cells frequently have a luminal phenotype. Virchows Arch. 2014;464(6):681–8.  https://doi.org/10.1007/s00428-014-1573-y.CrossRefPubMedGoogle Scholar
  37. 37.
    Dixon JM, Anderson TJ, Page DL, Lee D, Duffy SW. Infiltrating lobular carcinoma of the breast. Histopathology. 1982;6(2):149–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Tavassoli FA. Pathology of the breast. 2nd ed. New York: Appleton & Lange; 1999.Google Scholar
  39. 39.
    Fechner RE. Histologic variants of infiltrating lobular carcinoma of the breast. Hum Pathol. 1975;6(3):373–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Shousha S, Backhous CM, Alaghband-Zadeh J, Burn I. Alveolar variant of invasive lobular carcinoma of the breast. A tumor rich in estrogen receptors. Am J Clin Pathol. 1986;85(1):1–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Fisher ER, Gregorio RM, Redmond C, Fisher B. Tubulolobular invasive breast cancer: a variant of lobular invasive cancer. Hum Pathol. 1977;8(6):679–83.PubMedCrossRefGoogle Scholar
  42. 42.
    Weidner N, Semple JP. Pleomorphic variant of invasive lobular carcinoma of the breast. Hum Pathol. 1992;23(10):1167–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Middleton LP, Palacios DM, Bryant BR, Krebs P, Otis CN, Merino MJ. Pleomorphic lobular carcinoma: morphology, immunohistochemistry, and molecular analysis. Am J Surg Pathol. 2000;24(12):1650–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Walford N, ten Velden J. Histiocytoid breast carcinoma: an apocrine variant of lobular carcinoma. Histopathology. 1989;14(5):515–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Eusebi V, Foschini MP, Bussolati G, Rosen PP. Myoblastomatoid (histiocytoid) carcinoma of the breast. A type of apocrine carcinoma. Am J Surg Pathol. 1995;19(5):553–62.PubMedCrossRefGoogle Scholar
  46. 46.
    Rakha EA, Patel A, Powe DG, Benhasouna A, Green AR, Lambros MB, et al. Clinical and biological significance of E-cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol. 2010;34(10):1472–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Qureshi HS, Linden MD, Divine G, Raju UB. E-cadherin status in breast cancer correlates with histologic type but does not correlate with established prognostic parameters. Am J Clin Pathol. 2006;125(3):377–85.PubMedCrossRefGoogle Scholar
  48. 48.
    Da Silva L, Parry S, Reid L, Keith P, Waddell N, Kossai M, et al. Aberrant expression of E-cadherin in lobular carcinomas of the breast. Am J Surg Pathol. 2008;32(5):773–83.PubMedCrossRefGoogle Scholar
  49. 49.
    Sarrió D, Pérez-Mies B, Hardisson D, Moreno-Bueno G, Suárez A, Cano A, et al. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene. 2004;23(19):3272–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Rakha EA, El-Sayed ME, Powe DG, Green AR, Habashy H, Grainge MJ, et al. Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer. 2008;44(1):73–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Pestalozzi BC, Zahrieh D, Mallon E, Gusterson BA, Price KN, Gelber RD, et al. International Breast Cancer Study Group. Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. Eur J Cancer. 2008;44(1):73–83.CrossRefGoogle Scholar
  52. 52.
    Rakha EA, van Deurzen CH, Paish EC, Macmillan RD, Ellis IO, Lee AH. Pleomorphic lobular carcinoma of the breast: is it a prognostically significant pathological subtype independent of histological grade? Mod Pathol. 2013;26(4):496–501.PubMedCrossRefGoogle Scholar
  53. 53.
    Rakha EA, Lee AHS, Evans AJ, Menon S, Assad NY, Hodi Z, et al. Tubular carcinoma of the breast: further evidence to support its excellent prognosis. J Clin Oncol. 2010;28(1):99–104.PubMedCrossRefGoogle Scholar
  54. 54.
    Diab SG, Clark GM, Osborne CK, Libby A, Allred DC, Elledge RM. Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol. 1999;17(5):1442–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Page DL, Dixon JM, Anderson TJ, Lee D, Stewart HJ. Invasive cribriform carcinoma of the breast. Histopathology. 1983;7(4):525–36.PubMedCrossRefGoogle Scholar
  56. 56.
    Ellis IO, Galea M, Broughton N, Locker A, Blamey RW, Elston CW. Pathological prognostic factors in breast cancer. II. Histological type. Relationship with survival in a large study with long term of follow up. Histopathology. 1992;20:479–89.PubMedCrossRefGoogle Scholar
  57. 57.
    Venable JG, Schwartz AM, Silverberg SG. Infiltrating cribriform carcinoma of the breast: a distinctive clinicopathologic entity. Hum Pathol. 1990;21(3):333–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Tavassoli FA, Devilee P. World Health Organization classification of tumors. Tumors of the breast and female genital organs. 2nd ed. Lyon: IARC Press; 2003.Google Scholar
  59. 59.
    Vu-Nishino H, Tavassoli FA, Ahrens WA, Haffty BG. Clinicopathologic features and long-term outcome of patients with medullary breast carcinoma managed with breast-conserving therapy (BCT). Int J Radiat Oncol Biol Phys. 2005;62(4):1040–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Marginean F, Rakha EA, Ho BC, Ellis IO, Lee AH. Histological features of medullary carcinoma and prognosis in triple-negative basal-like carcinomas of the breast. Mod Pathol. 2010;23(10):1357–63.  https://doi.org/10.1038/modpathol.2010.123.CrossRefPubMedGoogle Scholar
  61. 61.
    Tan PH, Tse GM, Bay BH. Mucinous breast lesions: diagnostic challenges. J Clin Pathol. 2008;61(1):11–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Capella C, Eusebi V, Mann B, Azzopardi JG. Endocrine differentiation in mucoid carcinoma of the breast. Histopathology. 1980;4(6):613–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Di Saverio S, Gutierrez J, Avisar E. A retrospective review with long term follow up of 11,400 cases of pure mucinous breast carcinoma. Breast Cancer Res Treat. 2008;111(3):541–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Shet T, Chinoy R. Presence of a micropapillary pattern in mucinous carcinomas of the breast and its impact on the clinical behavior. Breast J. 2008;14(5):412–20.  https://doi.org/10.1111/j.1524-4741.2008.00616.x. Epub 2008 Jul 30.CrossRefPubMedGoogle Scholar
  65. 65.
    Barbashina V, Corben AD, Akram M, et al. Mucinous micropapillary carcinoma of the breast: an aggressive counterpart to conventional pure mucinous tumors. Hum Pathol. 2013;44(8):1577–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Liu F, Yang M, Li Z, Guo X. Invasive micropapillary mucinous carcinoma of the breast is associated with poor prognosis. Breast Cancer Res Treat. 2015;151(2):443–51.  https://doi.org/10.1007/s10549-015-3413-4.CrossRefPubMedGoogle Scholar
  67. 67.
    Tavassoli FA, Purcell CA, Bratthauer GL, Man Y. Androgen receptor positivity along with loss of bcl-2, ER, and PR expression in benign and malignant apocrine lesions of the breast. Implications for therapy. Breast J. 1996;2:1–10.CrossRefGoogle Scholar
  68. 68.
    Niemeier LA, Dabbs DJ, Beriwal S, Striebel JM, Bhargava R. Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol. 2010;23(2):205–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Dellapasqua S, Maisonneuve P, Viale G, Pruneri G, Mazzarol G, Ghisini R, Mazza M, Iorfida M, Rotmensz N, Veronesi P, Luini A, Goldhirsch A, Colleoni M. Immunohistochemically defined subtypes and outcome of apocrine breast cancer. Clin Breast Cancer. 2013;13(2):95–102.  https://doi.org/10.1016/j.clbc.2012.11.004.CrossRefPubMedGoogle Scholar
  70. 70.
    Meattini I, Pezzulla D, Saieva C, Bernini M et al. Triple negative apocrine carcinomas as a distinct subtype of triple negative breast cancer: a case-control study. Clin Breast Cancer. 2018 Mar 2. pii: S1526-8209(18)30015-6.  https://doi.org/10.1016/j.clbc.2018.02.012. [Epub ahead of print].PubMedCrossRefGoogle Scholar
  71. 71.
    Siriaunkgul S, Tavassoli FA. Invasive micropapillary carcinoma of the breast. Mod Pathol. 1993;6(6):660–2.PubMedGoogle Scholar
  72. 72.
    Ueng SH, Mezzetti T, Tavassoli FA. Papillary neoplasms of the breast: a review. Arch Pathol Lab Med. 2009;133:893–907.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Marchiò C, Iravani M, Natrajan R, Lambros MB, Savage K, Tamber N, et al. Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol. 2008;215(4):398–410.PubMedCrossRefGoogle Scholar
  74. 74.
    Zekioglu O, Erhan Y, Ciris M, Bayramoglu H, Ozdemir N. Invasive micropapillary carcinoma of the breast: high incidence of lymph node metastasis with extranodal extension and its immunohistochemical profile compared with invasive ductal carcinoma. Histopathology. 2004;44(1):18–23.PubMedCrossRefGoogle Scholar
  75. 75.
    Yamaguchi R, Tanaka M, Kondo K, Yokoyama T, Kaneko Y, Yamaguchi M, et al. Characteristic morphology of invasive micropapillary carcinoma of the breast: an immunohistochemical analysis. Jpn J Clin Oncol. 2010;40(8):781–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Vingiani A, Maisonneuve P, Dell’orto P, Farante G, Rotmensz N, Lissidini G, et al. The clinical relevance of micropapillary carcinoma of the breast: a case–control study. Histopathology. 2013;63(2):217–24.PubMedCrossRefGoogle Scholar
  77. 77.
    Luini A, Aguilar M, Gatti G, Fasani R, Botteri E, Brito J, et al. Metaplastic carcinoma of the breast, an unusual disease with worse prognosis: the experience of the European institute of oncology and review of the literature. Breast Cancer Res Treat. 2007;101(3):349–53.PubMedCrossRefGoogle Scholar
  78. 78.
    Tavassoli FA. Classification of metaplastic carcinomas of the breast. Pathol Annu. 1992;27(Pt 2):89–119.PubMedGoogle Scholar
  79. 79.
    Foschini MP, Eusebi V. Carcinomas of the breast showing myoepithelial cell differentiation. A review of the literature. Virchows Arch. 1998;432(4):303–10.PubMedCrossRefGoogle Scholar
  80. 80.
    Van Hoeven KH, Drudis T, Cranor ML, Erlandson RA, Rosen PP. Low-grade adenosquamous carcinoma of the breast. A clinocopathologic study of 32 cases with ultrastructural analysis. Am J Surg Pathol. 1993;17(3):248–58.PubMedCrossRefGoogle Scholar
  81. 81.
    Sneige N, Yaziji H, Mandavilli SR, Perez ER, Ordonez NG, Gown AM, et al. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol. 2001;25(8):1009–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Eusebi V, Lamovec J, Cattani MG, Fedeli F, Millis RR. Acantholytic variant of squamous-cell carcinoma of the breast. Am J Surg Pathol. 1986;10(12):855–61.PubMedCrossRefGoogle Scholar
  83. 83.
    Reis-Filho JS, Milanezi F, Paredes J, Silva P, Pereira EM, Maeda SA, et al. Novel and classic myoepithelial/stem cell markers in metaplastic carcinomas of the breast. Appl Immunohistochem Mol Morphol. 2003;11(1):1–8.PubMedGoogle Scholar
  84. 84.
    Reis-Filho JS, Schmitt FC. p63 expression in sarcomatoid/metaplastic carcinomas of the breast. Histopathology. 2003;42(1):94–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Reis-Filho JS, Milanezi F, Steele D, Savage K, Simpson PT, Nesland JM, et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology. 2006;49(1):10–21.PubMedCrossRefGoogle Scholar
  86. 86.
    Hennessy BT, Gonzales-Angulo AM, Stemke-Hale K, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69(10):4116–24.  https://doi.org/10.1158/0008-5472.CAN-08-3441.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Prat A, Parker JS, Karginova O, Fan C, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.  https://doi.org/10.1186/bcr2635.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Weigelt B, Ng CK, Shen R, Popova T, et al. Metaplastic breast carcinomas display genomic and transcriptomic heterogeneity. Mod Pathol. 2015;28(3):340–51.  https://doi.org/10.1038/modpathol.2014.142.CrossRefPubMedGoogle Scholar
  89. 89.
    Aydiner A, Şen F, Tambas M, Ciftci R, et al. Metaplastic breast carcinoma versus triple-negative breast cancer: survival and response to treatment. Medicine (Baltimore). 2015;94(52):e2341.  https://doi.org/10.1097/MD.0000000000002341.CrossRefGoogle Scholar
  90. 90.
    El Zein D, Hughes M, Kumar S, Peng X, et al. Metaplastic carcinoma of the breast is more aggressive than triple-negative breast cancer: a study from a single institution and review of literature. Clin Breast Cancer. 2017;17(5):382–91.  https://doi.org/10.1016/j.clbc.2017.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Righi L, Sapino A, Marchiò C, Papotti M, Bussolati G. Neuroendocrine differentiation in breast cancer: established facts and unresolved problems. Semin Diagn Pathol. 2010;27(1):69–76.PubMedCrossRefGoogle Scholar
  92. 92.
    Sapino A, Righi L, Cassoni P, Papotti M, Pietribiasi F, Bussolati G. Expression of the neuroendocrine phenotype in carcinomas of the breast. Semin Diagn Pathol. 2000;17(2):127–37.PubMedGoogle Scholar
  93. 93.
    Shin SJ, DeLellis RA, Ying L, Rosen PP. Small cell carcinoma of the breast: a clinicopathologic and immunohistochemical study of nine patients. Am J Surg Pathol. 2000;24(9):1231–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Marchio C, Geyer FC, Ng CK, Piscuoglio S. The genetic landscape of breast carcinomas with neuroendocrine differentiation. J Pathol. 2017;241(3):405–19.  https://doi.org/10.1002/path.4837.CrossRefPubMedGoogle Scholar
  95. 95.
    Lavigne M, Menet E, Tille JC, Lae M, et al. Comprehensive clinical and molecular analyses of neuroendocrine carcinomas of the breast. Mod Pathol. 2018;31(1):68–82.  https://doi.org/10.1038/modpathol.2017.107.CrossRefPubMedGoogle Scholar
  96. 96.
    Roininen N, Takala S, Haaspari KM, Jukkola-Vuorinen A, et al. Primary neuroendocrine breast carcinomas are associated with poor local control despite favourable biological profile: a retrospective clinical study. BMC Cancer. 2017;17(1):72.  https://doi.org/10.1186/s12885-017-3056-4.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Li D, Xiao X, Yang W, Shui R, Tu X, Lu H, et al. Secretory breast carcinoma: a clinicopathological and immunophenotypic study of 15 cases with a review of the literature. Mod Pathol. 2012;25(4):567–75.PubMedCrossRefGoogle Scholar
  98. 98.
    Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2:367–76.PubMedCrossRefGoogle Scholar
  99. 99.
    Laé M, Fréneaux P, Sastre-Garau X, Chouchane O, Sigal-Zafrani B, Vincent-Salomon A. Secretory breast carcinomas with ETV6-NTRK3 fusion gene belong to the basal-like carcinoma spectrum. Mod Pathol. 2009;22:291–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Horowitz DP, Sharma CS, Connolly E, Gidea-Addeo D, et al. Secretory carcinoma of the breast: results from the survival, epidemiology and end results database. Breast. 2012;21:350–3.PubMedCrossRefGoogle Scholar
  101. 101.
    Drilon A, Li G, Dogan S, Shen R, et al. What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann Oncol. 2016;27:920–6.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Collins LC, Schnitt SJ. Papillary lesions of the breast: selected diagnostic and management issues. Histopathology. 2008;52(1):20–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Collins LC, Carlo VP, Hwang H, Barry TS, Gown AM, Schnitt SJ. Intracystic papillary carcinomas of the breast: a reevaluation using a panel of myoepithelial cell markers. Am J Surg Pathol. 2006;30(8):1002–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Esposito NN, Dabbs DJ, Bhargava R. Are encapsulated papillary carcinomas of the breast in situ or invasive? A basement membrane study of 27 cases. Am J Clin Pathol. 2009;131(2):228–42.PubMedCrossRefGoogle Scholar
  105. 105.
    Mulligan AM, O’Malley FP. Metastatic potential of encapsulated (intracystic) papillary carcinoma of the breast: a report of 2 cases with axillary lymph node micrometastases. Int J Surg Pathol. 2007;15:143–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Nassar H, Qureshi H, Adsay NV, Visscher D. Clinicopathologic analysis of solid papillary carcinoma of the breast and associated invasive carcinomas. Am J Surg Pathol. 2006;30(4):501–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Nicolas MM, Wu Y, Middleton LP, Gilcrease MZ. Loss of myoepithelium is variable in solid papillary carcinoma of the breast. Histopathology. 2007;51(5):657–65.PubMedCrossRefGoogle Scholar
  108. 108.
    Duprez R, Wilkerson PM, Lacroix-Triki M, Lambros MB, et al. Immunophenotypic and genomic characterization of papillary carcinomas of the breast. J Pathol. 2012;226:427–41.PubMedCrossRefGoogle Scholar
  109. 109.
    Eusebi V, Damiani S, Ellis IO, et al. Breast tumor resembling the tall cell variant of papillary thyroid carcinoma: report of 5 cases. Am J Surg Pathol. 2003;27:1114–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Foschini MP, Asioli S, Foreid S, et al. Solid papillary breast carcinomas resembling the tall cell variant of papillary thyroid neoplasms: a unique invasive tumor with indolent behavior. Am J Surg Pathol. 2017;41:887–95.PubMedCrossRefGoogle Scholar
  111. 111.
    Marotti JD, Schnitt SJ. Genotype-phenotype correlations in breast cancer. Surg Pathol Clin. 2018;11(1):199–211.  https://doi.org/10.1016/j.path.2017.09.008.CrossRefPubMedGoogle Scholar
  112. 112.
    Ghabach B, Anderson WF, Curtis RE, Huycke MM, Lavigne JA, Dores GM. Adenoid cystic carcinoma of the breast in the United States (1977 to 2006): a population-based cohort study. Breast Cancer Res. 2010;12(4):R54.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Marchiò C, Weigelt B, Reis-Filho JS. Adenoid cystic carcinomas of the breast and salivary glands (or ‘the strange case of Dr Jekyll and Mr Hyde’ of exocrine gland carcinomas). J Clin Pathol. 2010;63(3):220–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Kulkarni N, Pezzi CM, Greif JM, Suzanne Klimberg V, Bailey L, Korourian S, et al. Rare breast cancer: 933 adenoid cystic carcinomas from the National Cancer Data Base. Ann Surg Oncol. 2013;20(7):2236–41.PubMedCrossRefGoogle Scholar
  115. 115.
    Shin SJ, Rosen PP. Solid variant of mammary adenoid cystic carcinoma with basaloid features: a study of nine cases. Am J Surg Pathol. 2002;26(4):413–20.PubMedCrossRefGoogle Scholar
  116. 116.
    Hayes MM, Seidman JD, Ashton MA. Glycogen-rich clear cell carcinoma of the breast. A clinicopathologic study of 21 cases. Am J Surg Pathol. 1995;19(8):904–11.PubMedCrossRefGoogle Scholar
  117. 117.
    Kuroda H, Sakamoto G, Ohnisi K, Itoyama S. Clinical and pathological features of glycogen-rich clear cell carcinoma of the breast. Breast Cancer. 2005;12(3):189–95.PubMedCrossRefGoogle Scholar
  118. 118.
    Ma X, Han Y, Fan Y, Cao X, Wang X. Clinicopathologic characteristics and prognosis of glycogen-rich clear cell carcinoma of the breast. Breast J. 2014;20(2):166–73.  https://doi.org/10.1111/tbj.12231.CrossRefPubMedGoogle Scholar
  119. 119.
    Yamauchi H, Woodward WA, Valero V, Alvarez RH, Lucci A, Buchholz TA, et al. Inflammatory breast cancer: what we know and what we need to learn. Oncologist. 2012;17(7):891–9.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin. 2010;60(6):351–75.PubMedCrossRefGoogle Scholar
  121. 121.
    Van Laere SJ, Ueno NT, Finetti P, Vermeulen P, et al. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin Cancer Res. 2013;19(17):4685–96.  https://doi.org/10.1158/1078-0432.CCR-12-2549.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Bertucci F, Ueno NT, Finetti P, Vermeulen P. Gene expression profiles of inflammatory breast cancer: correlation with response to neoadjuvant chemotherapy and metastasis-free survival. Ann Oncol. 2014;25(2):358–65.  https://doi.org/10.1093/annonc/mdt496.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sitki Tuzlali
    • 1
    • 2
  1. 1.Tuzlali Private Pathology LaboratoryIstanbulTurkey
  2. 2.Department of Pathology, Istanbul Medical FacultyIstanbul UniversityIstanbulTurkey

Personalised recommendations