Advertisement

Breast Disease pp 143-161 | Cite as

Clinical Aspects of Estrogen and Progesterone Receptors and ERBB2 Testing

  • Ebru Cilbir
  • Suayib YalcinEmail author
Chapter

Abstract

Human breast cancers depend on estrogen and/or progesterone for growth, and these effects are mediated through estrogen receptors (ERs) and progesterone receptors (PRs), respectively. The human epidermal growth factor receptor 2 (HER2) gene encodes a member of the epidermal growth factor receptor family of receptor tyrosine kinases, and its amplification with resultant overexpression plays a major role in sustaining multiple pathways in cancer growth. ERs, PRs, and HER2 status are the most important molecular markers in the standard care of all primary and recurrent/metastatic breast cancer patients and play both predictive and prognostic roles. The responsiveness of a tumor to hormone therapy is an important parameter in breast cancer management in both adjuvant and metastatic settings. Only breast cancers with HER2 amplification or overexpression respond to HER2-directed therapies. Hormonal status of the tumor is prognostic for patient outcome and site of metastasis. Hormonal receptor-positive disease represents an indolent and slowly growing tumor with longer time to disease recurrence. HER2 is a poor prognostic factor in the absence of HER2-directed therapies. Assessment of the ER/PR/HER2 status is an essential factor in the evaluation of every newly diagnosed breast cancer, and standardization of the assay methods is crucial.

Keywords

Breast cancer Estrogen Progesterone HER2 testing Clinical aspects 

References

  1. 1.
    Zumoff B, Fishman J, Bradlow HL, Hellman L. Hormone profiles in hormone-dependent cancers. Cancer Res. 1975;35:3365–73.PubMedGoogle Scholar
  2. 2.
    Stockwell S. Classics in oncology. George Thomas Beatson, M.D. (1848–1933). CA Cancer J Clin. 1983;33:105–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Boyd S. On oophorectomy in cancer of breast. Br Med J. 1900;2:1961–7.Google Scholar
  4. 4.
    Jensen EV, Jordan VC. The estrogen receptor: a model for molecular medicine. Clin Cancer Res. 2003;9:1980–9.PubMedGoogle Scholar
  5. 5.
    Allen E, Doisy EA. Landmark article Sept 8, 1923. An ovarian hormone. Preliminary report on its localization, extraction and partial purification, and action in test animals. By Edgar Allen and Edward A. Doisy. JAMA. 1983;250:2681–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Jensen EV, Block GE, Smith S, Kyser K, DeSombre ER. Estrogen receptors and breast cancer response to adrenalectomy. Natl Cancer Inst Monogr. 1971;34:55–70.PubMedGoogle Scholar
  7. 7.
    McGuire WLC, Carbone PP, Wollmer EP. Estrogen receptors in human breast cancer. New York: Raven; 1975.Google Scholar
  8. 8.
    Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Asp Med. 2006;27:299–402.CrossRefGoogle Scholar
  9. 9.
    Ali S, Coombes RC. Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia. 2000;5:271–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Helguero LA, Faulds MH, Gustafsson JA, Haldosen LA. Estrogen receptors alfa (Eralpha) and beta (Erbeta) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene. 2005;24:6605–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Renoir JM, Marsaud V, Lazennec G. Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol. 2013;85:449–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29:2905–19.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997;18:306–60.PubMedGoogle Scholar
  14. 14.
    Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005;23:1616–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Osborne CK, Schiff R, Fuqua SA, Shou J. Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res. 2001;7:4338s–42; discussion 411s–2sPubMedGoogle Scholar
  16. 16.
    Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M, et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell. 2003;115:751–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Lonard DM, O’Malley BW. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. 2007;27:691–700.PubMedCrossRefGoogle Scholar
  18. 18.
    Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–9.PubMedCrossRefGoogle Scholar
  19. 19.
    O’Malley BW. Coregulators: from whence came these “master genes”. Mol Endocrinol. 2007;21:1009–13.PubMedCrossRefGoogle Scholar
  20. 20.
    Heger Z, Guran R, Zitka O, Beklova M, Adam V, Kizek R. In vitro interactions between 17beta-estradiol and DNA result in formation of the hormone-DNA complexes. Int J Environ Res Public Health. 2014;11:7725–39.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Paruthiyil S, Parmar H, Kerekatte V, Cunha GR, Firestone GL, Leitman DC. Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res. 2004;64:423–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Strom A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson JA. Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci U S A. 2004;101:1566–71.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gougelet A, Bouclier C, Marsaud V, Maillard S, Mueller SO, Korach KS, et al. Estrogen receptor alpha and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90- and immunophilin-ligands in human breast cancer cells. J Steroid Biochem Mol Biol. 2005;94:71–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Grober OM, Mutarelli M, Giurato G, Ravo M, Cicatiello L, De Filippo MR, et al. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation. BMC Genomics. 2011;12:36.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Matthews J, Gustafsson JA. Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv. 2003;3:281–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Arnold SF, Obourn JD, Jaffe H, Notides AC. Phosphorylation of the human estrogen receptor by mitogen-activated protein kinase and casein kinase II: consequence on DNA binding. J Steroid Biochem Mol Biol. 1995;55:163–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Rogatsky I, Trowbridge JM, Garabedian MJ. Potentiation of human estrogen receptor alpha transcriptional activation through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 complex. J Biol Chem. 1999;274:22296–302.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V, et al. Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene. 2002;21:4921–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee H, Bai W. Regulation of estrogen receptor nuclear export by ligand-induced and p38-mediated receptor phosphorylation. Mol Cell Biol. 2002;22:5835–45.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Joel PB, Smith J, Sturgill TW, Fisher TL, Blenis J, Lannigan DA. Pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol Cell Biol. 1998;18:1978–84.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chen D, Pace PE, Coombes RC, Ali S. Phosphorylation of human estrogen receptor alpha by protein kinase A regulates dimerization. Mol Cell Biol. 1999;19:1002–15.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cui Y, Zhang M, Pestell R, Curran EM, Welshons WV, Fuqua SA. Phosphorylation of estrogen receptor alpha blocks its acetylation and regulates estrogen sensitivity. Cancer Res. 2004;64:9199–208.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang RA, Mazumdar A, Vadlamudi RK, Kumar R. P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J. 2002;21:5437–47.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Likhite VS, Stossi F, Kim K, Katzenellenbogen BS, Katzenellenbogen JA. Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol. 2006;20:3120–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Clemm DL, Sherman L, Boonyaratanakornkit V, Schrader WT, Weigel NL, Edwards DP. Differential hormone-dependent phosphorylation of progesterone receptor A and B forms revealed by a phosphoserine site-specific monoclonal antibody. Mol Endocrinol. 2000;14:52–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Daniel AR, Qiu M, Faivre EJ, Ostrander JH, Skildum A, Lange CA. Linkage of progestin and epidermal growth factor signaling: phosphorylation of progesterone receptors mediates transcriptional hypersensitivity and increased ligand-independent breast cancer cell growth. Steroids. 2007;72:188–201.PubMedCrossRefGoogle Scholar
  38. 38.
    Fuqua SA, Wiltschke C, Zhang QX, Borg A, Castles CG, Friedrichs WE, et al. A hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. Cancer Res. 2000;60:4026–9.PubMedGoogle Scholar
  39. 39.
    Herynk MH, Parra I, Cui Y, Beyer A, Wu MF, Hilsenbeck SG, et al. Association between the estrogen receptor alpha A908G mutation and outcomes in invasive breast cancer. Clin Cancer Res. 2007;13:3235–43.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Conway K, Parrish E, Edmiston SN, Tolbert D, Tse CK, Geradts J, et al. The estrogen receptor-alpha A908G (K303R) mutation occurs at a low frequency in invasive breast tumors: results from a population-based study. Breast Cancer Res. 2005;7:R871–80.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ma CX, Ellis MJ. The Cancer Genome Atlas: clinical applications for breast cancer. Oncology (Williston Park). 2013;27:1263–9, 74–9.Google Scholar
  42. 42.
    Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.CrossRefGoogle Scholar
  43. 43.
    Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R. ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015;12:573–83.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Toy W, Shen Y, Won H, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45:1439–45.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chandarlapaty S, Chen D, He W, et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: A secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol. 2016;2(10):1310–5.  https://doi.org/10.1001/jamaoncol.2016.1279.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Niu J, Andres G, Kramer K, et al. Incidence and clinical significance of ESR1 mutations in heavily pretreated metastatic breast cancer patients. Onco Targets Ther. 2015;8:3323–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Pietras RJ, Szego CM. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature. 1977;265:69–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Moriarty K, Kim KH, Bender JR. Minireview: estrogen receptor-mediated rapid signaling. Endocrinology. 2006;147:5557–63.PubMedCrossRefGoogle Scholar
  49. 49.
    Wehling M, Losel R. Non-genomic steroid hormone effects: membrane or intracellular receptors? J Steroid Biochem Mol Biol. 2006;102:180–3.PubMedCrossRefGoogle Scholar
  50. 50.
    Li L, Haynes MP, Bender JR. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc Natl Acad Sci U S A. 2003;100:4807–12.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci U S A. 2006;103:9063–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Levin ER, Pietras RJ. Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat. 2008;108:351–61.PubMedCrossRefGoogle Scholar
  53. 53.
    Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol. 2002;80:231–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Filardo EJ, Quinn JA, Sabo E. Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor. Steroids. 2008;73:870–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Song RX, Zhang Z, Chen Y, Bao Y, Santen RJ. Estrogen signaling via a linear pathway involving insulin-like growth factor I receptor, matrix metalloproteinases, and epidermal growth factor receptor to activate mitogen-activated protein kinase in MCF-7 breast cancer cells. Endocrinology. 2007;148:4091–101.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, Kumar R, et al. Linkage of rapid estrogen action to MAPK activation by Eralpha-Shc association and Shc pathway activation. Mol Endocrinol. 2002;16:116–27.PubMedGoogle Scholar
  57. 57.
    Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, et al. Nongenomic steroid action: controversies, questions, and answers. Physiol Rev. 2003;83:965–1016.PubMedCrossRefGoogle Scholar
  58. 58.
    Chen JQ, Yager JD, Russo J. Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta. 2005;1746:1–17.PubMedCrossRefGoogle Scholar
  59. 59.
    Pedram A, Razandi M, Wallace DC, Levin ER. Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell. 2006;17:2125–37.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Boonyaratanakornkit V, McGowan E, Sherman L, Mancini MA, Cheskis BJ, Edwards DP. The role of extranuclear signaling actions of progesterone receptor in mediating progesterone regulation of gene expression and the cell cycle. Mol Endocrinol. 2007;21:359–75.PubMedCrossRefGoogle Scholar
  61. 61.
    Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96:926–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Stoica GE, Franke TF, Moroni M, Mueller S, Morgan E, Iann MC, et al. Effect of estradiol on estrogen receptor-alpha gene expression and activity can be modulated by the ErbB2/PI 3-K/Akt pathway. Oncogene. 2003;22:7998–8011.PubMedCrossRefGoogle Scholar
  63. 63.
    Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, Osborne CK. Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res. 2004;10:331S–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Anderson WF, Chatterjee N, Ershler WB, Brawley OW. Estrogen receptor breast cancer phenotypes in the surveillance, epidemiology, and end results database. Breast Cancer Res Treat. 2002;76:27–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Early Breast Cancer Trialists’ Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomized trials. Lancet. 2005;365:1687–717.CrossRefGoogle Scholar
  66. 66.
    Nadji M, Gomez-Fernandez C, Ganjei-Azar P, Morales AR. Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5,993 breast cancers. Am J Clin Pathol. 2005;123:21–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Bardou VJ, Arpino G, Elledge RM, Osborne CK, Clark GM. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol. 2003;21:1973–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Arisio R, Sapino A, Cassoni P, Accinelli G, Cuccorese MC, Mano MP, et al. What modifies the relation between tumour size and lymph node metastases in T1 breast carcinomas? J Clin Pathol. 2000;53:846–50.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Manni A, Arafah B, Pearson OH. Estrogen and progesterone receptors in the prediction of response of breast cancer to endocrine therapy. Cancer. 1980;46:2838–41.PubMedCrossRefGoogle Scholar
  70. 70.
    Bezwoda WR, Esser JD, Dansey R, Kessel I, Lange M. The value of estrogen and progesterone receptor determinations in advanced breast cancer. Estrogen receptor level but not progesterone receptor level correlates with response to tamoxifen. Cancer. 1991;68:867–72.PubMedCrossRefGoogle Scholar
  71. 71.
    McClelland RA, Berger U, Miller LS, Powles TJ, Coombes RC. Immunocytochemical assay for estrogen receptor in patients with breast cancer: relationship to a biochemical assay and to outcome of therapy. J Clin Oncol. 1986;4:1171–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Mouridsen H, Gershanovich M, Sun Y, Perez-Carrion R, Boni C, Monnier A, et al. Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol. 2003;21:2101–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Dodwell D, Wardley A, Johnston S. Postmenopausal advanced breast cancer: options for therapy after tamoxifen and aromatase inhibitors. Breast. 2006;15:584–94.PubMedCrossRefGoogle Scholar
  74. 74.
    Buzdar A, Jonat W, Howell A, Jones SE, Blomqvist C, Vogel CL, et al. Anastrozole, a potent and selective aromatase inhibitor, versus megestrol acetate in postmenopausal women with advanced breast cancer: results of overview analysis of two phase III trials. Arimidex Study Group. J Clin Oncol. 1996;14:2000–11.PubMedCrossRefGoogle Scholar
  75. 75.
    Lonning PE, Taylor PD, Anker G, Iddon J, Wie L, Jørgensen LM, et al. High-dose estrogen treatment in postmenopausal breast cancer patients heavily exposed to endocrine therapy. Breast Cancer Res Treat. 2001;67:111–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Buzdar AU, Vergote I, Sainsbury R. The impact of hormone receptor status on the clinical efficacy of the new-generation aromatase inhibitors: a review of data from first-line metastatic disease trials in postmenopausal women. Breast J. 2004;10:211–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Elledge RM, Green S, Pugh R, Allred DC, Clark GM, Hill J, et al. Estrogen receptor (ER) and progesterone receptor (PgR), by ligand-binding assay compared with ER, PgR and pS2, by random-histochemistry in predicting response to tamoxifen in metastatic breast cancer: a Southwest Oncology Group Study. Int J Cancer. 2000;89:111–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Ravdin PM, Green S, Dorr TM, McGuire WL, Fabian C, Pugh RP, et al. Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective Southwest Oncology Group study. J Clin Oncol. 1992;10:1284–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Pertschuk LP, Feldman JG, Eisenberg KB, Carter AC, Thelmo WL, Cruz WP, et al. Immunocytochemical detection of progesterone receptor in breast cancer with monoclonal antibody. Relation to biochemical assay, disease-free survival, and clinical endocrine response. Cancer. 1988;62:342–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Spataro V, Price K, Goldhirsch A, Cavalli F, Simoncini E, Castiglione M, et al. Sequential estrogen receptor determinations from primary breast cancer and at relapse: prognostic and therapeutic relevance. The International Breast Cancer Study Group (formerly Ludwig Group). Ann Oncol. 1992;3:733–40.PubMedCrossRefGoogle Scholar
  81. 81.
    Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol. 1996;14:2584–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Lower EE, Glass EL, Bradley DA, Blau R, Heffelfinger S. Impact of metastatic estrogen receptor and progesterone receptor status on survival. Breast Cancer Res Treat. 2005;90:65–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Sari E, Guler G, Hayran M, Gullu I, Altundag K, Ozisik Y. Comparative study of the immunohistochemical detection of hormone receptor status and HER-2 expression in primary and paired recurrent/metastatic lesions of patients with breast cancer. Med Oncol. 2011;28:57–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Arslan C, Sari E, Aksoy S, Altundag K. Variation in hormone receptor and HER-2 status between primary and metastatic breast cancer: review of the literature. Expert Opin Ther Targets. 2011;15:21–30.PubMedCrossRefGoogle Scholar
  85. 85.
    Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC, et al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol. 2005;23:2469–76.PubMedCrossRefGoogle Scholar
  86. 86.
    Gross GE, Clark GM, Chamness GC, McGuire WL. Multiple progesterone receptor assays in human breast cancer. Cancer Res. 1984;44:836–40.PubMedGoogle Scholar
  87. 87.
    Bieche I, Lidereau R. Genetic alterations in breast cancer. Genes Chromosomes Cancer. 1995;14:227–51.PubMedCrossRefGoogle Scholar
  88. 88.
    Teixeira MR, Pandis N, Bardi G, Andersen JA, Mitelman F, Heim S. Clonal heterogeneity in breast cancer: karyotypic comparisons of multiple intra- and extra-tumorous samples from 3 patients. Int J Cancer. 1995;63:63–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Hutchins LF, Green SJ, Ravdin PM, Lew D, Martino S, Abeloff M, et al. Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: treatment results of Intergroup Protocol INT-0102. J Clin Oncol. 2005;23:8313–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Fisher B, Anderson S, Tan-Chiu E, Tan-Chiu E, Wolmark N, Wickerham DL, et al. Tamoxifen and chemotherapy for axillary node-negative, estrogen receptor-negative breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-23. J Clin Oncol. 2001;19:931–42.PubMedCrossRefGoogle Scholar
  91. 91.
    Dowsett M, Allred C, Knox J, Quinn E, Salter J, Wale C, et al. Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the Arimidex, Tamoxifen, Alone or in Combination trial. J Clin Oncol. 2008;26:1059–65.PubMedCrossRefGoogle Scholar
  92. 92.
    Viale G, Regan MM, Maiorano E, Mastropasqua MG, Dell’Orto P, Rasmussen BB, et al. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98. J Clin Oncol. 2007;25:3846–52.PubMedCrossRefGoogle Scholar
  93. 93.
    Early Breast Cancer Trialists’ Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomized trials. Lancet. 1998;351:1451–67.CrossRefGoogle Scholar
  94. 94.
    De Maeyer L, Van Limbergen E, De Nys K, Moerman P, Pochet N, Hendrickx W, et al. Does estrogen receptor negative/progesterone receptor positive breast carcinoma exist? J Clin Oncol. 2008;26:335–6; author reply 6–8PubMedCrossRefGoogle Scholar
  95. 95.
    Rakha EA, El-Sayed ME, Green AR, Paish EC, Powe DG, Gee J, et al. Biologic and clinical characteristics of breast cancer with single hormone receptor positive phenotype. J Clin Oncol. 2007;25:4772–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Dunnwald LK, Rossing MA, Li CI. Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res. 2007;9:R6.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Dowsett M, Houghton J, Iden C, Salter J, Farndon J, A’Hern R, et al. Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol. 2006;17:818–26.PubMedCrossRefGoogle Scholar
  98. 98.
    Ferno M, Stal O, Baldetorp B, Hatschek T, Källström AC, Malmström P, et al. Results of two or five years of adjuvant tamoxifen correlated to steroid receptor and S-phase levels. South Sweden Breast Cancer Group, and South-East Sweden Breast Cancer Group. Breast Cancer Res Treat. 2000;59:69–76.PubMedCrossRefGoogle Scholar
  99. 99.
    Lamy PJ, Pujol P, Thezenas S, Kramar A, Rouanet P, Guilleux F, et al. Progesterone receptor quantification as a strong prognostic determinant in postmenopausal breast cancer women under tamoxifen therapy. Breast Cancer Res Treat. 2002;76:65–71.PubMedCrossRefGoogle Scholar
  100. 100.
    Goss PE, Ingle JN, Martino S, Robert NJ, Muss HB, Piccart MJ, et al. Efficacy of letrozole extended adjuvant therapy according to estrogen receptor and progesterone receptor status of the primary tumor: National Cancer Institute of Canada Clinical Trials Group MA.17. J Clin Oncol. 2007;25:2006–11.PubMedCrossRefGoogle Scholar
  101. 101.
    Sparano JA, Paik S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol. 2008;26:721–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Andre F, Broglio K, Roche H, Martin M, Mackey JR, Penault-Llorca F, et al. Estrogen receptor expression and efficacy of docetaxel-containing adjuvant chemotherapy in patients with node-positive breast cancer: results from a pooled analysis. J Clin Oncol. 2008;26:2636–43.PubMedCrossRefGoogle Scholar
  103. 103.
    Martin M, Pienkowski T, Mackey J, Pawlicki M, Guastalla JP, Weaver C, et al. Adjuvant docetaxel for node-positive breast cancer. N Engl J Med. 2005;352:2302–13.PubMedCrossRefGoogle Scholar
  104. 104.
    De Laurentiis M, Cancello G, D’Agostino D, Giuliano M, Giordano A, Montagna E, et al. Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J Clin Oncol. 2008;26:44–53.PubMedCrossRefGoogle Scholar
  105. 105.
    Henry NL, Hayes DF. Can biology trump anatomy? Do all node-positive patients with breast cancer need chemotherapy? J Clin Oncol. 2007;25:2501–3.PubMedCrossRefGoogle Scholar
  106. 106.
    Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ, et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA. 2006;295:1658–67.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hayes DF, Thor AD, Dressler LG, Weaver D, Edgerton S, Cowan D, et al. HER2 and response to paclitaxel in node-positive breast cancer. N Engl J Med. 2007;357:1496–506.PubMedCrossRefGoogle Scholar
  108. 108.
    Mazouni C, Kau SW, Frye D, Andre F, Kuerer HM, Buchholz TA, et al. Inclusion of taxanes, particularly weekly paclitaxel, in preoperative chemotherapy improves pathologic complete response rate in estrogen receptor-positive breast cancers. Ann Oncol. 2007;18:874–80.PubMedCrossRefGoogle Scholar
  109. 109.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.PubMedCrossRefGoogle Scholar
  110. 110.
    Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.PubMedCrossRefGoogle Scholar
  111. 111.
    Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomized trial. Lancet Oncol. 2010;11:55–65.PubMedCrossRefGoogle Scholar
  112. 112.
    Brodie A, Sabnis G. Adaptive changes result in activation of alternate signaling pathways and acquisition of resistance to aromatase inhibitors. Clin Cancer Res. 2011;17:4208–13.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Miller TW, Rexer BN, Garrett JT, Arteaga CL. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 2011;13:224.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Liu J, Li HQ, Zhou FX, Yu JW, Han ZH. Targeting the mTOR pathway in breast cancer. Tumour Biol. 2017;39:1010428317710825.PubMedGoogle Scholar
  115. 115.
    Beaver JA, Park BH. The BOLERO-2 trial: the addition of everolimus to exemestane in the treatment of postmenopausal hormone receptor-positive advanced breast cancer. Future Oncol. 2012;8:651–7.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18:17.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Miller TW, Balko JM, Fox EM, Ghazoui Z, Dunbier A, Anderson H, et al. ERalpha-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov. 2011;1:338–51.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17:425–39.PubMedCrossRefGoogle Scholar
  119. 119.
    Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375:1925–36.PubMedCrossRefGoogle Scholar
  120. 120.
    Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375:1738–48.PubMedCrossRefGoogle Scholar
  121. 121.
    Goetz MP, Toi M, Campone M, Sohn J, Paluch-Shimon S, Huober J, et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol. 2017;35:3638–46.PubMedCrossRefGoogle Scholar
  122. 122.
    Ramos-Esquivel A, Hernandez-Steller H, Savard MF, Landaverde DU. Cyclin-dependent kinase 4/6 inhibitors as first-line treatment for post-menopausal metastatic hormone receptor-positive breast cancer patients: a systematic review and meta-analysis of phase III randomized clinical trials. Breast Cancer. 2018;25:479–88.PubMedCrossRefGoogle Scholar
  123. 123.
    Crowe JP, Hubay CA, Pearson OH, Marshall JS, Rosenblatt J, Mansour EG, et al. Estrogen receptor status as a prognostic indicator for stage I breast cancer patients. Breast Cancer Res Treat. 1982;2:171–6.PubMedCrossRefGoogle Scholar
  124. 124.
    Fisher B, Redmond C, Fisher ER, Caplan R. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from national surgical adjuvant breast and bowel project protocol B-06. J Clin Oncol. 1988;6:1076–87.PubMedCrossRefGoogle Scholar
  125. 125.
    Costa SD, Lange S, Klinga K, Merkle E, Kaufmann M. Factors influencing the prognostic role of oestrogen and progesterone receptor levels in breast cancer – results of the analysis of 670 patients with 11 years of follow-up. Eur J Cancer. 2002;38:1329–34.PubMedCrossRefGoogle Scholar
  126. 126.
    Hilsenbeck SG, Ravdin PM, de Moor CA, Chamness GC, Osborne CK, Clark GM. Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Res Treat. 1998;52:227–37.PubMedCrossRefGoogle Scholar
  127. 127.
    Schmitt M, Thomssen C, Ulm K, Seiderer A, Harbeck N, Höfler H, et al. Time-varying prognostic impact of tumour biological factors urokinase (uPA), PAI-1 and steroid hormone receptor status in primary breast cancer. Br J Cancer. 1997;76:306–11.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Diab SG, Elledge RM, Clark GM. Tumor characteristics and clinical outcome of elderly women with breast cancer. J Natl Cancer Inst. 2000;92:550–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Fisher ER, Osborne CK, McGuire WL, Redmond C, Knight WA, Fisher B, et al. Correlation of primary breast cancer histopathology and estrogen receptor content. Breast Cancer Res Treat. 1981;1:37–41.PubMedCrossRefGoogle Scholar
  130. 130.
    Wenger CR, Beardslee S, Owens MA, Pounds G, Oldaker T, Vendely P, et al. DNA ploidy, S-phase, and steroid receptors in more than 127,000 breast cancer patients. Breast Cancer Res Treat. 1993;28:9–20.PubMedCrossRefGoogle Scholar
  131. 131.
    Elledge RM, Fuqua SA, Clark GM, Pujol P, Allred DC, McGuire WL. Prognostic significance of p53 gene alterations in node-negative breast cancer. Breast Cancer Res Treat. 1993;26:225–35.PubMedCrossRefGoogle Scholar
  132. 132.
    Hess KR, Pusztai L, Buzdar AU, Hortobagyi GN. Estrogen receptors and distinct patterns of breast cancer relapse. Breast Cancer Res Treat. 2003;78:105–18.PubMedCrossRefGoogle Scholar
  133. 133.
    Koenders PG, Beex LV, Langens R, Kloppenborg PW, Smals AG, Benraad TJ. Steroid hormone receptor activity of primary human breast cancer and pattern of first metastasis. The breast cancer study group. Breast Cancer Res Treat. 1991;18:27–32.PubMedCrossRefGoogle Scholar
  134. 134.
    Nofech-Mozes S, Vella ET, Dhesy-Thind S, Hagerty KL, Mangu PB, Temin S, et al. Systematic review on hormone receptor testing in breast cancer. Appl Immunohistochem Mol Morphol. 2012;20:214–63.PubMedCrossRefGoogle Scholar
  135. 135.
    Alberts SR, Ingle JN, Roche PR, Cha SS, Wold LE, Farr GH Jr, et al. Comparison of estrogen receptor determinations by a biochemical ligand-binding assay and immunohistochemical staining with monoclonal antibody ER1D5 in females with lymph node positive breast carcinoma entered on two prospective clinical trials. Cancer. 1996;78:764–72.PubMedCrossRefGoogle Scholar
  136. 136.
    Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol. 1999;17:1474–81.PubMedCrossRefGoogle Scholar
  137. 137.
    Thomson CS, Twelves CJ, Mallon EA, Leake RE. Scottish cancer trials breast G, Scottish cancer therapy N. Adjuvant ovarian ablation vs CMF chemotherapy in premenopausal breast cancer patients: trial update and impact of immunohistochemical assessment of ER status. Breast. 2002;11:419–29.PubMedCrossRefGoogle Scholar
  138. 138.
    Regan MM, Viale G, Mastropasqua MG, Maiorano E, Golouh R, Carbone A, et al. Re-evaluating adjuvant breast cancer trials: assessing hormone receptor status by immunohistochemical versus extraction assays. J Natl Cancer Inst. 2006;98:1571–81.PubMedCrossRefGoogle Scholar
  139. 139.
    Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Bakx N, et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics. 2006;7:278.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Gown AM. Unmasking the mysteries of antigen or epitope retrieval and formalin fixation. Am J Clin Pathol. 2004;121:172–4.PubMedCrossRefGoogle Scholar
  142. 142.
    Diaz LK, Sneige N. Estrogen receptor analysis for breast cancer: current issues and keys to increasing testing accuracy. Adv Anat Pathol. 2005;12:10–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Goldstein NS, Ferkowicz M, Odish E, Mani A, Hastah F. Minimum formalin fixation time for consistent estrogen receptor immunohistochemical staining of invasive breast carcinoma. Am J Clin Pathol. 2003;120:86–92.PubMedCrossRefGoogle Scholar
  144. 144.
    Taylor CR, Levenson RM. Quantification of immunohistochemistry – issues concerning methods, utility and semiquantitative assessment II. Histopathology. 2006;49:411–24.PubMedCrossRefGoogle Scholar
  145. 145.
    Arber DA. Effect of prolonged formalin fixation on the immunohistochemical reactivity of breast markers. Appl Immunohistochem Mol Morphol. 2002;10:183–6.PubMedGoogle Scholar
  146. 146.
    Oh JJ, Grosshans DR, Wong SG, Slamon DJ. Identification of differentially expressed genes associated with HER-2/neu overexpression in human breast cancer cells. Nucleic Acids Res. 1999;27:4008–17.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kumar R, Yarmand-Bagheri R. The role of HER2 in angiogenesis. Semin Oncol. 2001;28:27–32.PubMedCrossRefGoogle Scholar
  148. 148.
    Press MF, Cordon-Cardo C, Slamon DJ. Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene. 1990;5:953–62.PubMedGoogle Scholar
  149. 149.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.PubMedCrossRefGoogle Scholar
  150. 150.
    Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.PubMedCrossRefGoogle Scholar
  151. 151.
    Saffari B, Jones LA, el-Naggar A, Felix JC, George J, Press MF. Amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: correlation with overall survival. Cancer Res. 1995;55:5693–8.PubMedGoogle Scholar
  152. 152.
    Press MF, Pike MC, Hung G, Zhou JY, Ma Y, George J, Dietz-Band J, et al. Amplification and overexpression of HER-2/neu in carcinomas of the salivary gland: correlation with poor prognosis. Cancer Res. 1994;54:5675–82.PubMedGoogle Scholar
  153. 153.
    Park JB, Rhim JS, Park SC, Kimm SW, Kraus MH. Amplification, overexpression, and rearrangement of the erbB-2 protooncogene in primary human stomach carcinomas. Cancer Res. 1989;49:6605–9.PubMedGoogle Scholar
  154. 154.
    Sorkin A, Goh LK. Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res. 2008;314:3093–106.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.PubMedCrossRefGoogle Scholar
  156. 156.
    Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421:756–60.PubMedCrossRefGoogle Scholar
  157. 157.
    Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16:5276–87.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996;15:2452–67.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, Bartholomeusz G, et al. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol. 2005;25:11005–18.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Ni CY, Murphy MP, Golde TE, Carpenter G. gamma-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science. 2001;294:2179–81.PubMedCrossRefGoogle Scholar
  161. 161.
    Wang SC, Hung MC. Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res. 2009;15:6484–9.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Press MF, Bernstein L, Thomas PA, Meisner LF, Zhou JY, Ma Y, et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol. 1997;15:2894–904.PubMedCrossRefGoogle Scholar
  164. 164.
    Mass RD, Press MF, Anderson S, Cobleigh MA, Vogel CL, Dybdal N, et al. Evaluation of clinical outcomes according to HER2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab. Clin Breast Cancer. 2005;6:240–6.PubMedCrossRefGoogle Scholar
  165. 165.
    Seidman AD, Berry D, Cirrincione C, Harris L, Muss H, Marcom PK, et al. Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of cancer and leukemia group B protocol 9840. J Clin Oncol. 2008;26:1642–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Slamon DJ, Leyland-Jones B, Shak S, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.PubMedCrossRefGoogle Scholar
  167. 167.
    Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84.PubMedCrossRefGoogle Scholar
  169. 169.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.PubMedCrossRefGoogle Scholar
  170. 170.
    Gianni L, Dafni U, Gelber RD, Azambuja E, Muehlbauer S, Goldhirsch A, et al. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol. 2011;12:236–44.PubMedCrossRefGoogle Scholar
  171. 171.
    Perez EA, Romond EH, Suman VJ, Jeong JH, Davidson NE, Geyer CE Jr, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol. 2011;29:3366–73.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.PubMedCrossRefGoogle Scholar
  173. 173.
    Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, Roman L, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.PubMedCrossRefGoogle Scholar
  174. 174.
    Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783–91.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Dati C, Antoniotti S, Taverna D, Perroteau I, De Bortoli M. Inhibition of c-erbB-2 oncogene expression by estrogens in human breast cancer cells. Oncogene. 1990;5:1001–6.PubMedGoogle Scholar
  176. 176.
    Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, et al. Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat. 1992;24:85–95.PubMedCrossRefGoogle Scholar
  177. 177.
    Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene. 1995;10:2435–46.PubMedGoogle Scholar
  178. 178.
    Mueller H, Kueng W, Schoumacher F, Herzer S, Eppenberger U. Selective regulation of steroid receptor expression in MCF-7 breast cancer cells by a novel member of the heregulin family. Biochem Biophys Res Commun. 1995;217:1271–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Borg A, Baldetorp B, Ferno M, Killander D, Olsson H, Rydén S, et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett. 1994;81:137–44.PubMedCrossRefGoogle Scholar
  180. 180.
    Carlomagno C, Perrone F, Gallo C, De Laurentiis M, Lauria R, Morabito A, et al. c-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J Clin Oncol. 1996;14:2702–8.PubMedCrossRefGoogle Scholar
  181. 181.
    De Placido S, De Laurentiis M, Carlomagno C, Gallo C, Perrone F, Pepe S, et al. Twenty-year results of the Naples GUN randomized trial: predictive factors of adjuvant tamoxifen efficacy in early breast cancer. Clin Cancer Res. 2003;9:1039–46.PubMedGoogle Scholar
  182. 182.
    De Laurentiis M, Arpino G, Massarelli E, Ruggiero A, Carlomagno C, Ciardiello F, et al. A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res. 2005;11:4741–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Knoop AS, Bentzen SM, Nielsen MM, Rasmussen BB, Rose C. Value of epidermal growth factor receptor, HER2, p53, and steroid receptors in predicting the efficacy of tamoxifen in high-risk postmenopausal breast cancer patients. J Clin Oncol. 2001;19:3376–84.PubMedCrossRefGoogle Scholar
  184. 184.
    Berry DA, Muss HB, Thor AD, Dressler L, Liu ET, Broadwater G, et al. HER-2/neu and p53 expression versus tamoxifen resistance in estrogen receptor-positive, node-positive breast cancer. J Clin Oncol. 2000;18:3471–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Stal O, Borg A, Ferno M, Källström AC, Malmström P, Nordenskjöld B, et al. ErbB2 status and the benefit from two or five years of adjuvant tamoxifen in postmenopausal early stage breast cancer. Ann Oncol. 2000;11:1545–50.PubMedCrossRefGoogle Scholar
  186. 186.
    Love RR, Duc NB, Havighurst TC, Mohsin SK, Zhang Q, DeMets DL, et al. Her-2/neu overexpression and response to oophorectomy plus tamoxifen adjuvant therapy in estrogen receptor-positive premenopausal women with operable breast cancer. J Clin Oncol. 2003;21:453–7.PubMedCrossRefGoogle Scholar
  187. 187.
    Ellis MJ, Coop A, Singh B, Mauriac L, Llombert-Cussac A, Jänicke F, et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol. 2001;19:3808–16.PubMedCrossRefGoogle Scholar
  188. 188.
    Wright C, Nicholson S, Angus B, Sainsbury JR, Farndon J, Cairns J, et al. Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer. 1992;65:118–21.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Leitzel K, Teramoto Y, Konrad K, Chinchilli VM, Volas G, Grossberg H, et al. Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer. J Clin Oncol. 1995;13:1129–35.PubMedCrossRefGoogle Scholar
  190. 190.
    Yamauchi H, O’Neill A, Gelman R, Carney W, Tenney DY, Hösch S, et al. Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol. 1997;15:2518–25.PubMedCrossRefGoogle Scholar
  191. 191.
    Lipton A, Ali SM, Leitzel K, Demers L, Harvey HA, Chaudri-Ross HA, et al. Serum HER-2/neu and response to the aromatase inhibitor letrozole versus tamoxifen. J Clin Oncol. 2003;21:1967–72.PubMedCrossRefGoogle Scholar
  192. 192.
    Elledge RM, Green S, Ciocca D, Pugh R, Allred DC, Clark GM, et al. HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: a Southwest Oncology Group Study. Clin Cancer Res. 1998;4:7–12.PubMedGoogle Scholar
  193. 193.
    Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.PubMedCrossRefGoogle Scholar
  194. 194.
    Pritchard KI, Levine MN, Tu D. neu/erbB-2 overexpression and response to hormonal therapy in premenopausal women in the adjuvant breast cancer setting: will it play in Peoria? part II. J Clin Oncol. 2003;21:399–400.PubMedCrossRefGoogle Scholar
  195. 195.
    Paik S, Bryant J, Park C, Fisher B, Tan-Chiu E, Hyams D, et al. erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst. 1998;90:1361–70.PubMedCrossRefGoogle Scholar
  196. 196.
    Paik S, Bryant J, Tan-Chiu E, Yothers G, Park C, Wickerham DL, et al. HER2 and choice of adjuvant chemotherapy for invasive breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-15. J Natl Cancer Inst. 2000;92:1991–8.PubMedCrossRefGoogle Scholar
  197. 197.
    Del Mastro L, Bruzzi P, Nicolo G, Cavazzini G, Contu A, D’Amico M, et al. HER2 expression and efficacy of dose-dense anthracycline-containing adjuvant chemotherapy in breast cancer patients. Br J Cancer. 2005;93:7–14.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Gennari A, Sormani MP, Pronzato P, Puntoni M, Colozza M, Pfeffer U, et al. HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J Natl Cancer Inst. 2008;100:14–20.PubMedCrossRefGoogle Scholar
  199. 199.
    Villman K, Sjostrom J, Heikkila R, Hultborn R, Malmström P, Bengtsson NO, et al. TOP2A and HER2 gene amplification as predictors of response to anthracycline treatment in breast cancer. Acta Oncol. 2006;45:590–6.PubMedCrossRefGoogle Scholar
  200. 200.
    Press MF, Sauter G, Buyse M, Bernstein L, Guzman R, Santiago A, et al. Alteration of topoisomerase II-alpha gene in human breast cancer: association with responsiveness to anthracycline-based chemotherapy. J Clin Oncol. 2011;29:859–67.PubMedCrossRefGoogle Scholar
  201. 201.
    Di Leo A, Desmedt C, Bartlett JM, Piette F, Ejlertsen B, Pritchard KI, et al. HER2 and TOP2A as predictive markers for anthracycline-containing chemotherapy regimens as adjuvant treatment of breast cancer: a meta-analysis of individual patient data. Lancet Oncol. 2011;12:1134–42.PubMedCrossRefGoogle Scholar
  202. 202.
    Hayes DF. Steady progress against HER2-positive breast cancer. N Engl J Med. 2011;365:1336–8.PubMedCrossRefGoogle Scholar
  203. 203.
    Konecny GE, Thomssen C, Luck HJ, Untch M, Wang HJ, Kuhn W, et al. Her-2/neu gene amplification and response to paclitaxel in patients with metastatic breast cancer. J Natl Cancer Inst. 2004;96:1141–51.PubMedCrossRefGoogle Scholar
  204. 204.
    Martin M, Rodriguez-Lescure A, Ruiz A, Alba E, Calvo L, Ruiz-Borrego M, et al. Randomized phase 3 trial of fluorouracil, epirubicin, and cyclophosphamide alone or followed by Paclitaxel for early breast cancer. J Natl Cancer Inst. 2008;100:805–14.PubMedCrossRefGoogle Scholar
  205. 205.
    Sparano JA, Wang M, Martino S, Jones V, Perez EA, Saphner T, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med. 2008;358:1663–71.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Learn PA, Yeh IT, McNutt M, Chisholm GB, Pollock BH, Rousseau DL Jr, et al. HER-2/neu expression as a predictor of response to neoadjuvant docetaxel in patients with operable breast carcinoma. Cancer. 2005;103:2252–60.PubMedCrossRefGoogle Scholar
  207. 207.
    Gonzalez-Angulo AM, Krishnamurthy S, Yamamura Y, Broglio KR, Pusztai L, Buzdar AU, et al. Lack of association between amplification of her-2 and response to preoperative taxanes in patients with breast carcinoma. Cancer. 2004;101:258–63.PubMedCrossRefGoogle Scholar
  208. 208.
    Pu RT, Schott AF, Sturtz DE, Griffith KA, Kleer CG. Pathologic features of breast cancer associated with complete response to neoadjuvant chemotherapy: importance of tumor necrosis. Am J Surg Pathol. 2005;29:354–8.PubMedCrossRefGoogle Scholar
  209. 209.
    Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17:2639–48.PubMedCrossRefGoogle Scholar
  210. 210.
    Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American society of clinical oncology/college of American pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25:118–45.PubMedCrossRefGoogle Scholar
  211. 211.
    Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update. J Clin Oncol. 2018;36:2105–22.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Perez EA, Cortes J, Gonzalez-Angulo AM, Bartlett JM. HER2 testing: current status and future directions. Cancer Treat Rev. 2014;40:276–84.PubMedCrossRefGoogle Scholar
  213. 213.
    Press MF, Slamon DJ, Flom KJ, Park J, Zhou JY, Bernstein L. Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol. 2002;20:3095–105.PubMedCrossRefGoogle Scholar
  214. 214.
    Penault-Llorca F, Bilous M, Dowsett M, Hanna W, Osamura RY, Rüschoff J, et al. Emerging technologies for assessing HER2 amplification. Am J Clin Pathol. 2009;132:539–48.PubMedCrossRefGoogle Scholar
  215. 215.
    Kosa C, Kardos L, Kovacs J, Szollosi Z. Comparison of dual-color dual-hapten brightfield in situ hybridization (DDISH) and fluorescence in situ hybridization in breast cancer HER2 assessment. Pathol Res Pract. 2013;209:147–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Medical OncologyDiskapi Yildirim Beyazit Treatment and Research HospitalAnkaraTurkey
  2. 2.Department of Medical OncologyHacettepe University Cancer InstituteAnkaraTurkey

Personalised recommendations