Advertisement

Process Modeling in Aspen Plus®

  • Claudio Madeddu
  • Massimiliano Errico
  • Roberto Baratti
Chapter
Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)

Abstract

In this chapter, the implementation in Aspen Plus® of the CO2 post-combustion capture by reactive absorption-stripping process model is presented. Components and thermodynamics in the Properties Environment are considered in the first place. Then, in the Simulation environment, the set-up of the RadFrac model—Rate-Based mode, considered mandatory for this kind of process, is extensively described. The attention is especially focused on the appropriate definition of the rate-based model parameters needed for the discretization of the liquid film. A section is dedicated to the examination of the system fluid dynamics by means of the evaluation of the Peclet number and the number of segments analysis. In particular, it is highlighted how this procedure is of fundamental importance to obtain the correct solution of the resulting system of algebraic equations.

References

  1. 1.
    Cau G, Tola V, Deiana P (2014) Comparative performance assessment of USC and IGCC power plants integrated with CO2 capture systems. Fuel 116:820–833CrossRefGoogle Scholar
  2. 2.
    Plaza JM, Wagener DV, Rochelle GT (2009) Modeling CO2 capture with aqueous monoethanolamine. Energy Procedia 1(1):1171–1178CrossRefGoogle Scholar
  3. 3.
    Wang M, Lawal P, Stephenson P et al (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89(9):1609–1624CrossRefGoogle Scholar
  4. 4.
    Tan LS, Shariff M, Lau KK et al (2012) Factors affecting CO2 absorption efficiency in packed column: a review. J Ind Eng Chem 18(6):1874–1883CrossRefGoogle Scholar
  5. 5.
    Bui M, Gunawan I, Verheyen V et al (2014) Dynamic modelling and optimisation of flexible operation in post-combustion CO2 capture plants-A review. Comput Chem Eng 61:245–265CrossRefGoogle Scholar
  6. 6.
    Austgen DM, Rochelle GT, Peng X et al (1989) Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems Using the Electrolyte-NRTL Equation. Ind Eng Chem Res 28(7):1060–1073CrossRefGoogle Scholar
  7. 7.
    Weiland RH, Chakravarty T, Mather AE (1993) Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines. Ind Eng Chem Res 32(7):1419–1430CrossRefGoogle Scholar
  8. 8.
    Lawal A, Wang M, Stephenson P et al (2009) Dynamic modelling of CO2 absorption for post-combustion capture in coal-fired power plant. Fuel 88(12):2455–2462CrossRefGoogle Scholar
  9. 9.
    Lin Y, Pan T-H, Shan-Hill Wong D et al (2011) Plantwide control of CO2 capture by absorption and stripping using monoethanolamine solution. Ind Eng Chem Res 50(3):1338–1345CrossRefGoogle Scholar
  10. 10.
    Biliyok C, Lawal A, Wang M et al (2012) Dynamic modelling, validation and analysis of post-combustion chemical absorption CO2 capture plant. Int J Greenhouse Gas Control 9:428–445CrossRefGoogle Scholar
  11. 11.
    Liu Y, Zhang L, Watanasiri S (1999) Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model. Ind Eng Chem Res 38(5):2080CrossRefGoogle Scholar
  12. 12.
    Hilliard MD (2008) A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas. Dissertation, The University of Texas at AustinGoogle Scholar
  13. 13.
    Kvamsdal HM, Rochelle GT (2008) Effect of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Ind Eng Chem Res 47(3):867–875CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Chen H, Chen C-C et al (2009) Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Ind Eng Chem Res 48(20):9233–9246CrossRefGoogle Scholar
  15. 15.
    Moioli S, Pellegrini LA, Gamba S (2012) Simulation of CO2 capture by MEA scrubbing with a rate-based model. Procedia Eng 42:1651–1661CrossRefGoogle Scholar
  16. 16.
    Razi N, Svendsen HF, Bolland O (2013) Validation of mass transfer correlations for CO2 absorption with MEA using pilot data. Int J Greenhouse Gas Control 19:478–491CrossRefGoogle Scholar
  17. 17.
    Posch S, Haider M (2013) Dynamic modeling of CO2 absorption from coal-fired power plant into an aqueous monoethanolamine solution. Chem Eng Res Des 91(6):977–987CrossRefGoogle Scholar
  18. 18.
    Errico M, Madeddu C, Pinna D et al (2016) Model calibration for the carbon dioxide-amine absorption system. Appl Energy 183:958–968CrossRefGoogle Scholar
  19. 19.
    Madeddu C, Errico M, Baratti R (2017) Rigorous modeling of a CO2-MEA stripping system. Chem Eng Trans 57:451–456Google Scholar
  20. 20.
    Luo X, Wang M (2017) Improving prediction accuracy of a rate-based model of an MEA-based carbon capture process for large-scale commercial deployment. Engineering 3:232–243CrossRefGoogle Scholar
  21. 21.
    Lawal A, Wang M, Stephenson P et al (2010) Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants. Fuel 89(10):2791–2801CrossRefGoogle Scholar
  22. 22.
    Freguia S (2002) Modeling of CO2 Removal from Flue Gases with Monoethanolamine. Dissertation, The University of Texas at AustinGoogle Scholar
  23. 23.
    Nasrifar K, Tafazzol AH (2010) Vapor-liquid equilibria of acid gas-aqueous ethanolamine solutions using the PC-SAFT equation of state. Ind Eng Chem Res 49(16):7620–7630CrossRefGoogle Scholar
  24. 24.
    Aboudheir A, Tontiwachwuthikul P, Chakma A et al (2003) Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. Chem Eng Sci 58(23–24):5195–5210CrossRefGoogle Scholar
  25. 25.
    Tobiesen FA, Svendsen HF (2007) Experimental validation of a rigorous absorber model for CO2 postcombustion capture. AIChE J 53(4):846–865CrossRefGoogle Scholar
  26. 26.
    Faramarzi L, Kontogeorgis GM, Michelsen ML et al (2010) Absorber model for CO2 capture by monoethanolamine. Ind Eng Chem Res 49(8):3751–3759CrossRefGoogle Scholar
  27. 27.
    Meldon JH, Morales-Cabrera JA (2011) Analysis of carbon dioxide absorption in and stripping from aqueous monoethanolamine. Chem Eng Journ 171(3):753–759CrossRefGoogle Scholar
  28. 28.
    Mores P, Scenna N, Mussati S (2012) A rate based model of a packed column for CO2 absorption using aqueous monoethanolamine solution. Int J Greenhouse Gas Control 6:21–36CrossRefGoogle Scholar
  29. 29.
    Mores P, Scenna N, Mussati S (2012) CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process. Energy 45(1):1042–1058CrossRefGoogle Scholar
  30. 30.
    Neveux T, Moullec YL, Corriou J-P et al (2013) Modeling CO2 capture in amine solvents: prediction of performance and insights on limiting phenomena. Ind Eng Chem Res 52(11):4266–4279CrossRefGoogle Scholar
  31. 31.
    Aspen Technology, Inc. (2008) Aspen plus: rate based model of the CO2 capture process by MEA using aspen plus. Aspen Technology Inc., Burlington, MAGoogle Scholar
  32. 32.
    Pinsent BRW, Pearson L, Roughton FJW (1956) The kinetics of combination of carbon dioxide with hydroxide ions. Trans Faraday Soc 52:1512–1520CrossRefGoogle Scholar
  33. 33.
    Murphree EV (1925) Rectifying column calculations with particular reference to N component mixtures. Ind Eng Chem 17(7):747–750CrossRefGoogle Scholar
  34. 34.
    Øi LE (2007) Aspen HYSYS simulation of CO2 removal by amine absorption from a gas based power plant. Paper presented at the SIMS2007 Conference, Gøteborg, 30–31 October 2007Google Scholar
  35. 35.
    Mores P, Scenna N, Mussati S (2011) Post-combustion CO2 capture process: Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution. Chem Eng Res Des 89(9):1587–1599CrossRefGoogle Scholar
  36. 36.
    Øi LE (2012) Comparison of Aspen HYSYS and Aspen Plus simulation of CO2 absorption into MEA from atmospheric gas. Energy Procedia 23:360–369CrossRefGoogle Scholar
  37. 37.
    Walter JF, Sherwood TK (1941) Gas absorption in bubble-cap columns. Ind Eng Chem 33(4):493–501CrossRefGoogle Scholar
  38. 38.
    Afkhamipour M, Mofarahi M (2013) Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution. Int J Greenhouse Gas Control 15:186–199CrossRefGoogle Scholar
  39. 39.
    Kucka L, Müller I, Kenig EY, Górak A (2003) On the modelling and simulation of sour gas absorption by aqueous amine solutions. Chem Eng Sci 58(16):3571–3578CrossRefGoogle Scholar
  40. 40.
    Kvamsdal HM, Jakobsen JP, Hoff KA (2009) Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chem Eng Process Intensif 49(1):135–144CrossRefGoogle Scholar
  41. 41.
    Gáspár J, Cormoş A-M (2011) Dynamic modeling and validation of absorber and desorber column for post-combustion CO2 capture. Comput Chem Eng 35(10):2044–2052CrossRefGoogle Scholar
  42. 42.
    Khan FM, Krishnamoorti V, Mahmud T (2011) Modelling reactive absorption of CO2 in packed column for post-combustion carbon capture applications. Chem Eng Res Des 89(9):1600–1608CrossRefGoogle Scholar
  43. 43.
    Gaspar J, Cormos A-M (2012) Dynamic modeling and absorption capacity assessment of CO2 capture process. Int J Greenhouse Gas Control 8:45–55CrossRefGoogle Scholar
  44. 44.
    Kvamsdal HM, Hillestad M (2012) Selection of model parameter correlations in a rate-based CO2 absorber model aimed for process simulation. Int J Greenhouse Gas Control 11:11–20CrossRefGoogle Scholar
  45. 45.
    Mac Dowell N, Samsatli NJ, Shah N (2013) Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column. Int J Greenhouse Gas Control 12:247–258CrossRefGoogle Scholar
  46. 46.
    Lewis WK, Whitman WG (1924) Principles of gas absorption. Ind Eng Chem 16(12):1215–1220CrossRefGoogle Scholar
  47. 47.
    Scott-Fogler H (2006) Elements of chemical reaction engineering, Prentice HallGoogle Scholar
  48. 48.
    Taylor R, Krishna R (1993) Multicomponent Mass Transfer. Wiley, New YorkGoogle Scholar
  49. 49.
    Levenspiel O (1999) Chemical reaction engineering. Wiley, New YorkGoogle Scholar
  50. 50.
    Zhang Y, Chen C-C (2013) Modeling CO2 absorption and desorption by aqueous monoethanolamine solution with Aspen rate-based model. Energy Procedia 37:1584–1596CrossRefGoogle Scholar
  51. 51.
    Pacheco MA, Rochelle GT (1998) Rate-based modeling of reactive absorption of CO2 and H2S into aqueous methyldiethanolamine. Ind Eng Chem Res 37(10):4107–4117CrossRefGoogle Scholar
  52. 52.
    Davis ME (1984) Numerical methods and modelling for chemical engineers. Wiley, New YorkGoogle Scholar
  53. 53.
    Kenig EY, Schneider R, Górak A (1999) Rigorous dynamic modelling of complex reactive absorption processes. Chem Eng Sci 54(21):5195–5203CrossRefGoogle Scholar
  54. 54.
    Schneider R, Kenig EY, Górak A (2001) Complex reactive absorption processes: model optimization and dynamic column simulation. Comput Aided Chem Eng 9:285–290CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Claudio Madeddu
    • 1
  • Massimiliano Errico
    • 2
  • Roberto Baratti
    • 3
  1. 1.Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università di CagliariCagliariItaly
  2. 2.Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern DenmarkOdense MDenmark
  3. 3.Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità di CagliariCagliariItaly

Personalised recommendations