Advertisement

Cerebral Tumors

  • Marianna Brienza
  • Patrizia Pulitano
  • Oriano MecarelliEmail author
Chapter

Abstract

EEG is an important diagnostic tool in cerebral tumors, useful to identify tumor-related ictal and interictal epileptiform abnormalities or slowings, to monitor antiepileptic treatment, and to address surgery. In this chapter, we will discuss the general and specific characteristics of EEG in different cerebral tumors, with distinction among the sites and types of lesion. Some considerations about the pathophysiological mechanisms underlying the EEG abnormalities and the EEG characteristics after surgery will also be decribed .

Keywords

Cerebral tumors DNET Hypothalamic hamartoma Dual pathology 

References

  1. 1.
    Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:522–30.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Magnus O, Van der Holst M. Zeta waves: a special type of slow delta waves. EEG Clin Neurophysiol. 1987;67:140–6.CrossRefGoogle Scholar
  3. 3.
    Dunne JW, Silbert PL. Zeta waves: a distinctive type of intermittent delta wave studied prospectively. Clin Exp Neurol. 1991;28: 238–43.PubMedGoogle Scholar
  4. 4.
    Stern JM. Atlas of EEG patterns. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2013.Google Scholar
  5. 5.
    Brigo F. Intermittent rhythmic delta activity patterns. Epilepsy Behav. 2011;20:254–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Knudsen-Baas KM, Power KN, Engelsen BA, Hegrestad SE, Gilhus NE, Storstein AM. Status epilepticus secondary to glioma. Seizure. 2016;40:76–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Janati A, Hester RL. Spindle activity in the waking electroencephalogram: report of a case with hemispheric glioblastoma. Clin Electroencephal. 1986;17:1–5.Google Scholar
  8. 8.
    Steriade M. Corticothalamic resonance, states of vigilance, and mentation. Neuroscience. 2000;101:243–76.PubMedCrossRefGoogle Scholar
  9. 9.
    O’Connor SC, Robinson PA. Analysis of the electroencephalographic activity associated with thalamic tumors. J Theor Biol. 2005;233:271–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Gastaut H, Regis H, Gastaut JL, Yermenos E, Low MD. Lipomas of the corpus callosum and epilepsy. Neurology. 1980;30:132–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Fuga M, Tanaka T, Yamamoto Y, Hasegawa Y, Murayama Y, Takahashi-Fujigasaki J. Lipoma in the corpus callosum presenting with epileptic seizures associated with expanding perifocal edema: a case report and literature review. Case Rep Neurol Med. 2015;2015:520208.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Stark J, Friedman E, Thompson S, Von Allmen G, Bhattacharjee M, Tandon N. Atypical presentations of dysembryoplastic neuroepithelial tumors. Epilepsia. 2018;59:e14–7PubMedCrossRefGoogle Scholar
  13. 13.
    Labate A, Briellmann RS, Harvey AS, et al. Temporal lobe dysembryoplastic neuroepithelial tumor: significance of discordant interictal spikes. Epileptic Disord. 2004;6:107–14.PubMedGoogle Scholar
  14. 14.
    Radhakrishnan A, Abraham M, Vilanilam G, et al. Surgery for “long-term epilepsy associated tumors (LEATs)”: seizure outcome and its predictors. Clin Neurol and Neurosurg. 2016;141:98–105.CrossRefGoogle Scholar
  15. 15.
    Coons SW, Rekate HL, Prenger EC, et al. The histopathology of hypothalamic hamartomas: study of 57 cases. J Neuropathol Exp Neurol. 2007; 66: 131–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Striano S, Striano P. Clinical features and evolution of the gelastic seizures–hypothalamic hamartoma syndrome. Epilepsia. 2017;58(Suppl. 2): 12–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Specchio N, Rizzi M, Trivisano M, et al. Acute intralesional recording in hypothalamic hamartoma: description of 4 cases. Acta Neurol Belg. 2015;115:233–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Scholly J, Staack AM, Kahane P, et al. Hypothalamic hamartoma: epileptogenesis beyond the lesion? Epilepsia. 2017;58(Suppl. 2):32–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Harvey AS, Freeman JL. Epilepsy in hypothalamic hamartoma: clinical and EEG features. Semin Pediatr Neurol. 2007;14:60–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Kovac S, Diehl B, Wehner T, et al. Gelastic seizures: incidence, clinical and EEG features in adult patients undergoing video-EEG telemetry. Epilepsia. 2014;56::e1–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Leal AJ, Moreira A, Robalo C, et al. Different electroclinical manifestations of the epilepsy associated with hamartomas connecting to the middle or posterior hypothalamus. Epilepsia. 2003;44:1191–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Freeman JL, Harvey AS, Rosenfeld JV, et al. Generalized epilepsy in hypothalamic hamartoma: evolution and postoperative resolution. Neurology. 2003;60:762–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Claus EB, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M, Black PM. Epidemiology of intracranial meningioma. Neurosurgery. 2005;57:1088–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Antinheimo J, Sankila R, Carpen O, Pukkala E, Sainio M, Jaaskelainen J. Population-based analysis of sporadic and type 2 neurofibromatosis-associated meningiomas and schwannomas. Neurology. 2000;54:71–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Black PM. Meningiomas. Neurosurgery. 1993; 32: 643–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Burger PC, Scheithauer BW. Meningiomas. In: Burger PC, Scheithauer BW, editors. AFIP atlas of tumor pathology: tumors of the central nervous system. Washington, DC: American Registry of Pathology; 2007.Google Scholar
  27. 27.
    Chan RC, Thompson GB. Morbidity, mortality, and quality of life following surgery for intracranial meningiomas. A retrospective study in 257 cases. J Neurosurg. 1984;60:52–60PubMedCrossRefGoogle Scholar
  28. 28.
    Regis J, Sanson M, Kalamarides M. Recurrent multiple meningioma and generalized seizure. Neurochirurgie. 2005;51:129–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Chozick BS, Reinert SE, Greenblatt SH. Incidence of seizures after surgery for supratentorial meningiomas: a modern analysis. J Neurosurg. 1996;84:382–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Rothoerl RD, Bernreuther D, Woertgen C, Brawanski A. The value of routine electroencephalographic recordings in predicting postoperative seizures associated with meningioma surgery. Neurosurg Rev. 2003;26:108–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Wirsching HG, Morel C, Gmür C, et al. Predicting outcome of epilepsy after meningioma resection. Neuro-Oncology. 2016;18:1002–10.PubMedCrossRefGoogle Scholar
  32. 32.
    Callaghan N, Garrett A, Goggin T. Withdrawal of anticonvulsant drugs in patients free of seizures for two years. A prospective study. N Engl J Med. 1988;318:942–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Lynam L, Lyons M, Drzkowski J, et al. Frequency of seizures in patients with newly diagnosed brain tumors: a retrospective review. Clin Neurol Neurosurg. 2007;109:634–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Lebrun C, Fontaine D, Ramaioli A, et al. Nice Brain Tumor Study Group. Long-term outcome of oligodendrogliomas. Neurology. 2004;62:1783–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Benerjee P, Filippi D, Hauser W. The descriptive epidemiology of epilepsy – a review. Epilepsy Res. 2009;85:31–45.CrossRefGoogle Scholar
  36. 36.
    Louis DN, Perry A, Reifenberger G, et al. World Health Organization histological classification of tumours of the central nervous system. Acta Neuropathol. 2016;131:803–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Kerkhof M, Vecht CJ. Seizure characteristics and prognostic factors of gliomas. Epilepsia. 2013;54(Suppl 9):12–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Majores M, von Lehe M, Fassunke J, Schramm J, Becker AJ, Simon M. Tumor recurrence and malignant progression of gangliogliomas. Cancer. 2008;113:3355–563.PubMedCrossRefGoogle Scholar
  39. 39.
    Luyken C, Blumcke I, Fimmers R, et al. The spectrum of long-term epilepsy-associated tumors: long term seizure and tumor outcome and neurosurgical aspects. Epilepsia. 2003;44:822–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Politsky J. Brain tumor-related epilepsy: a current review of the etiologic basis and diagnostic and treatment approaches. Curr Neurol Neurosci Rep. 2017;17:70.PubMedCrossRefGoogle Scholar
  41. 41.
    Blümcke I, Thom M, Aronica E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia. 2011;52:158–74.PubMedCrossRefGoogle Scholar
  42. 42.
    Cossu M, Fuschillo D, Bramerio M, et al. Epilepsy surgery of focal cortical dysplasia-associated tumors. Epilepsia. 2013;54(Suppl 9): 115–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Palmini A, Paglioli E, Duval Silva V. Developmental tumors and adjacent cortical dysplasia: single or dual pathology? Epilepsia. 2013;54(Suppl 9):18–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Nowell M, Miserocchi A, McEvoy AW. Tumors in epilepsy. Semin Neurol. 2015;35:209–17.PubMedCrossRefGoogle Scholar
  45. 45.
    Pallud J, Capelle L, Huberfeld G. Tumoral epileptogenicity: how does it happen? Epilepsia. 2013;54 Suppl 9):30–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marianna Brienza
    • 1
  • Patrizia Pulitano
    • 2
  • Oriano Mecarelli
    • 1
    Email author
  1. 1.Department of Human NeurosciencesSapienza University of RomeRomeItaly
  2. 2.Azienda Ospedaliero-Universitaria Policlinico Umberto IRomeItaly

Personalised recommendations