Advertisement

Resilience Quantification and Assessment

  • Igor Linkov
  • Benjamin D. Trump
Chapter
Part of the Risk, Systems and Decisions book series (RSD)

Abstract

Risk quantification is an essential element of any risk or resilience management tool. Traditionally, chemical risk quantification is undertaken with the assistance of extensive data in an exposure-driven approach, where both human and environmental health risk is evaluated in repeated trials. In infrastructure risk quantification, less common events, such as natural disasters, may be quantified through probabilities reliant on extensive historical data. However, in the absence of rigorous quantitative data, exposure-driven risk assessment may be replaced (however temporarily) by qualitative assessment. Regardless of method chosen, however, the ultimate goal of risk quantification is to classify a material or project as containing no risk, prohibitive risk, or some gradient in between.

References

  1. Alberts, D. S., & Hayes, R. E. (2003). Power to the edge: Command… control… in the information age. Office of the Assistant Secretary of Defense, Washington, DC, Command and Control Research Program (CCRP).Google Scholar
  2. Ayyub, B. M. (2014). Systems resilience for multihazard environments: Definition, metrics, and valuation for decision making. Risk Analysis, 34(2), 340–355.Google Scholar
  3. Bakkensen, L. A., Fox-Lent, C., Read, L. K., & Linkov, I. (2017). Validating resilience and vulnerability indices in the context of natural disasters. Risk Analysis, 37(5), 982–1004.Google Scholar
  4. Balnaves, M., & Caputi, P. (2001). Introduction to quantitative research methods: An investigative approach. Beverly Hills, CA: Sage.Google Scholar
  5. Bernard, H. R., & Bernard, H. R. (2012). Social research methods: Qualitative and quantitative approaches. Beverly Hills, CA: Sage.Google Scholar
  6. Collier, Z. A., & Linkov, I. (2014). Decision making for resilience within the context of network centric operations. Army Corps of Engineers Vicksburg MS Engineer Research and Development Center.Google Scholar
  7. Committee on Increasing National Resilience to Hazards and Disasters, Committee on Science, Engineering, and Public Policy, and The National Academies. (2012). Disaster resilience: A national imperative. Washington, DC: National Academies Press.Google Scholar
  8. Cutter, S. L., Ash, K. D., & Emrich, C. T. (2014). The geographies of community disaster resilience. Global Environmental Change, 29, 65–77.Google Scholar
  9. Eisenberg, D. A., Linkov, I., Park, J., Bates, M. E., Fox-Lent, C., & Seager, T. P. (2014a). Resilience metrics: Lessons from military doctrines. Solution, 5(5), 76–87.Google Scholar
  10. Eisenberg, D. A., Park, J., Bates, M. E., Fox-Lent, C., Seager, T. P., & Linkov, I. (2014b). Resilience metrics: Lessons from military doctrines. Solutions, 5(5), 76–87.Google Scholar
  11. Fox-Lent, C., Bates, M. E., & Linkov, I. (2015). A matrix approach to community resilience assessment: An illustrative case at Rockaway Peninsula. Environment Systems and Decisions, 35(2), 209–218.Google Scholar
  12. Francis, R., & Bekera, B. (2014). A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliability Engineering & System Safety, 121, 90–103.Google Scholar
  13. Frazier, A., Arendt, L., Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). A framework for defining and measuring resilience at the community scale: The PEOPLES resilience framework (MCEER, pp. 10–0006).Google Scholar
  14. Ganin, A. A., et al. (2016). Operational resilience: Concepts, design and analysis. Scientific Reports, 6, 19540.CrossRefGoogle Scholar
  15. Ganin, A. A., Kitsak, M., Marchese, D., Keisler, J. M., Seager, T., & Linkov, I. (2017). Resilience and efficiency in transportation networks. Science Advances, 3(12), e1701079.CrossRefGoogle Scholar
  16. Gao, J., Buldyrev, S. V., Havlin, S., & Stanley, H. E. (2011). Robustness of a network of networks. Physical Review Letters, 107(19), 195701.Google Scholar
  17. Gao, J., Buldyrev, S. V., Stanley, H. E., & Havlin, S. (2012). Networks formed from interdependent networks. Nature Physics, 8(1), 40.Google Scholar
  18. Gao, J., Barzel, B., & Barabási, A. L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307.Google Scholar
  19. Governing Magazine. (2017). Car ownership in U.S. cities data and map. Retrieved July 1, 2018, from http://www.governing.com/gov-data/car-ownership-numbers-of-vehicles-by-city-map.html.
  20. Kelic, A., Collier, Z. A., Brown, C., Beyeler, W. E., Outkin, A. V., Vargas, V. N., & Ehlen, M. A. (2013). Decision framework for evaluating the macroeconomic risks and policy impacts of cyber attacks. Environment Systems and Decisions, 33(4), 544–560.Google Scholar
  21. King, G., Keohane, R., & Verba, S. (1994). Scientific inference in qualitative research. Princeton, NJ: Princeton University Press.Google Scholar
  22. Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., et al. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888.Google Scholar
  23. Larkin, S., Fox-Lent, C., Eisenberg, D. A., Trump, B. D., Wallace, S., Chadderton, C., & Linkov, I. (2015). Benchmarking agency and organizational practices in resilience decision making. Environment Systems and Decisions, 35(2), 185–195.CrossRefGoogle Scholar
  24. Linkov, I., & Moberg, E. (2011). Multi-criteria decision analysis: Environmental applications and case studies. Boca Raton: CRC Press.Google Scholar
  25. Linkov, I., Eisenberg, D. A., Bates, M. E., Chang, D., Convertino, M., Allen, J. H., Flynn, S. E., & Seager, T. P. (2013a). Measurable resilience for actionable policy. Environmental Science & Technology, 47(18), 10108–10110.Google Scholar
  26. Linkov, I., Eisenberg, D. A., Plourde, K., Seager, T. P., Allen, J., & Kott, A. (2013b). Resilience metrics for cyber systems. Environment Systems and Decisions, 33(4), 471–476.Google Scholar
  27. Linkov, I., Anklam, E., Collier, Z. A., DiMase, D., & Renn, O. (2014a). Risk-based standards: Integrating top–down and bottom–up approaches. Environment Systems and Decisions, 34(1), 134–137.CrossRefGoogle Scholar
  28. Linkov, I., Bridges, T., Creutzig, F., Decker, J., Fox-Lent, C., Kröger, W., & Lambert, J. H. (2014b). Changing the resilience paradigm. Nature Climate Change, 4(6), 407–409.CrossRefGoogle Scholar
  29. Linkov, I., Fox-Lent, C., Keisler, J., Sala, S. D., & Sieweke, J. (2014c). Risk and resilience lessons from Venice. Environment Systems and Decisions, 34(3), 378–382.CrossRefGoogle Scholar
  30. Linkov, I., Trump, B. D., Ditmer, R., & Hazle, M. (2014d). Munitions and explosives of concern: International governance and applications for the United States. Environmental Sciences Europe, 26(1), 30.CrossRefGoogle Scholar
  31. Linkov, I., Trump, B., Jin, D., Mazurczak, M., & Schreurs, M. (2014e). A decision-analytic approach to predict state regulation of hydraulic fracturing. Environmental Sciences Europe, 26(1), 20.CrossRefGoogle Scholar
  32. Linkov, I., Trump, B. D., & Fox-Lent, K. (2016). Resilience: Approaches to risk analysis and governance. IRGC, Resource Guide on Resilience, EPFL International Risk Governance Center, Lausanne, v29-07-2016. Retrieved October 10, 2016, from https://www.irgc.org/riskgovernance/resilience/.
  33. Linkov, I., Poinsatte-Jones, K., Trump, B. D., Ganin, A. A., & Kepner, J. (2019). Rulemaking for insider threat mitigation. In A. Kott & I. Linkov (Eds.), Cyber resilience of systems and networks (pp. 265–286). Cham: Springer.Google Scholar
  34. Mahoney, J., & Goertz, G. (2006). A tale of two cultures: Contrasting quantitative and qualitative research. Political Analysis, 14(3), 227–249.Google Scholar
  35. Massaro, E., Ganin, A., Perra, N., Linkov, I., & Vespignani, A. (2018). Resilience management during large-scale epidemic outbreaks. Scientific Reports, 8(1), 1859.CrossRefGoogle Scholar
  36. Park, J., Seager, T. P., Rao, P. S. C., Convertino, M., & Linkov, I. (2013). Integrating risk and resilience approaches to catastrophe management in engineering systems. Risk Analysis, 33(3), 356–367.CrossRefGoogle Scholar
  37. Ritchie, J., Lewis, J., Nicholls, C. M., & Ormston, R. (Eds.). (2013). Qualitative research practice: A guide for social science students and researchers. Beverley Hills, CA: Sage.Google Scholar
  38. Roege, P. E., Collier, Z. A., Mancillas, J., McDonagh, J. A., & Linkov, I. (2014). Metrics for energy resilience. Energy Policy, 72, 249–256.Google Scholar
  39. Rosati, J. D., Touzinsky, K. F., & Lillycrop, W. F. (2015). Quantifying coastal system resilience for the US Army Corps of Engineers. Environment Systems and Decisions, 35(2), 196–208.Google Scholar
  40. Vugrin, E. D., Warren, D. E., & Ehlen, M. A. (2011). A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Safety Progress, 30(3), 280–290.Google Scholar
  41. Yatsalo, B., Gritsyuk, S., Sullivan, T., Trump, B., & Linkov, I. (2016). Multi-criteria risk management with the use of DecernsMCDA: Methods and case studies. Environment Systems and Decisions, 36(3), 266–276.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Igor Linkov
    • 1
  • Benjamin D. Trump
    • 1
  1. 1.US Army Corps of EngineersConcordUSA

Personalised recommendations