Advertisement

Properties Invariant Under Feedback

  • Jeffrey Yi-Lin Forrest
Chapter
Part of the IFSR International Series in Systems Science and Systems Engineering book series (IFSR, volume 32)

Abstract

To continue our investigation of single-relation systems, this chapter studies such important concepts as MT-time systems, linear time systems, stationary systems, and time invariably realizable systems, along with some feedback-invariant properties.

References

  1. Bayliss, L.E.: Living Control Systems. San Francisco (1966)Google Scholar
  2. Deng, J.-L.: Grey Control Systems. Hua-zhong Institute of Technology Press, Wuhan (1985)Google Scholar
  3. Forrest, J., Ying, Y.R., Gong, Z.W.: Currency Wars: Offense and Defense through Systemic Thinking. CRC Press, an imprint of Taylor and Francis, New York (2018)Google Scholar
  4. Henig, M.I.: Vector-Valued Dynamic Programming. SIAM J. Control Optim 3, 237–245 (1983)MathSciNetzbMATHGoogle Scholar
  5. Lin, Y., Ma, Y.H.: General feedback systems. Int. J Gen. Syst. 18(2), 143–154 (1990)CrossRefGoogle Scholar
  6. Milsum, J.H.: Biological Control Systems Analysis. McGraw-Hill, New York (1966)Google Scholar
  7. Negoita, C.V.: Pullback versus feedback. In: Negoita, C.V. (ed.) Cybernetics and Applied Systems, pp. 239–247. Marcel Dekker, New York (1992)Google Scholar
  8. Saito, T.: Feedback transformation of linear systems. Int. J. Syst. Sci. 17(9), 1305–1315 (1986)MathSciNetCrossRefGoogle Scholar
  9. Saito, T.: Structure of the class of linear functional time systems under output feedback transformation. Int. J. Syst. Sci. 18(3), 1017–1027 (1987)MathSciNetCrossRefGoogle Scholar
  10. Saito, T., Mesarovic, M.D.: A meaning of the decoupling by feedback of linear functional time systems. Int. J. Gen. Syst. 11(1), 47–61 (1985)MathSciNetCrossRefGoogle Scholar
  11. Takahara, Y., Asahi, T.: Causality invariance of general systems under output feedback transformations. Int. J. Syst. Sci. 16(10), 1185–1206 (1985)MathSciNetCrossRefGoogle Scholar
  12. Wonham, W.M.: Linear Multi-Variable Control: A Geometric Approach. Springer, New York (1979)CrossRefGoogle Scholar
  13. Wu, X.M.: Pansystems analysis—a new exploration of interdisciplinary investigation (with appendices on discussions on medicine, chemistry, logic and economics). Sci. Explor. 1(1), 125–164 (1981)Google Scholar
  14. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of BusinessSlippery Rock University School of BusinessSlippery RockUSA

Personalised recommendations