Advertisement

The Methodology of Modeling and Simulation of Human Resources and Industrial Robots in FlexSim

  • Grzegorz Gołda
  • Adrian KampaEmail author
  • Damian Krenczyk
Chapter
Part of the EcoProduction book series (ECOPROD)

Abstract

Nowadays, the manufacturing processes become more complex and difficult to analyze. Therefore, the computer simulation is widely used for modeling of manufacturing systems that can include human resources and industrial robots. In the article, the human- and robot-related factors are described, and the methodology of modeling and simulation of human operators and industrial robots is presented. It is based on Overall Equipment Effectiveness (OEE) factors and includes planned availability and failures, work performance, and product quality. An example of industrial press line with modeling and simulation of human resources and industrial robots in FlexSim is presented that allows for better representation and understanding of the real production process.

Keywords

Discrete Event Simulation (DES) Manufacturing process Human factors Industrial robot FlexSim 

References

  1. 1.
    Baines, T., Mason, S., Siebers, P.O., Ladbrook, J.: Humans: the missing link in manufacturing simulation? Simul. Model. Pract. Theory 12, 515–526 (2004)CrossRefGoogle Scholar
  2. 2.
    Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.: Discrete-Event System Simulation, 5th edn. Prentice Hall, Upper Saddle River, NJ (2010)Google Scholar
  3. 3.
    Barney, M., McCarty, T.: The New Six Sigma. Prentice Hall Professional, New York (2001)Google Scholar
  4. 4.
    Beaverstock, M., Greenwood, A., Lavery, E., Nordgren, W.: Applied Simulation: Modeling and Analysis Using FlexSim. FlexSim Software Products Inc., Orem (2012)Google Scholar
  5. 5.
    Burduk, A.: Stability analysis of the production system using simulation models. In: Pawlewski, P., Greenwood, A. (eds.) Process Simulation and Optimization in Sustainable Logistics and Manufacturing, pp. 69–83. Springer, Cham (2014)Google Scholar
  6. 6.
    Chryssolouris, G.: Manufacturing Systems—Theory and Practice. Springer, New York (2005)Google Scholar
  7. 7.
    Davidrajuh, R.: Modeling Discrete-Event Systems with GPenSIM: An Introduction. Springer, New York (2018)Google Scholar
  8. 8.
    Delfo Poland Plant: Comau robotics tandem press line automation. https://www.youtube.com/watch?v=bDfkctxNJ10, 31 Jan 2018
  9. 9.
    Dhillon, B.S., Aleem, M.A.: A report on robot reliability and safety in Canada: a survey of robot users. J. Qual. Maint. Eng. 6(1), 61–74 (2000)CrossRefGoogle Scholar
  10. 10.
    Doumeingts, G., Vallespir, B., Darracar, D.M.: Design methodology for advanced manufacturing systems. Comput. Ind. 9, 271–296 (1987)CrossRefGoogle Scholar
  11. 11.
    Genaidy, A.M., Gupta, T.: Robot and human performance evaluation. In: Rahimi, M., Karwowski, W. (eds.) Human–Robot Interaction, pp. 4–15. Taylor & Francis, London (1992)Google Scholar
  12. 12.
    Glaser, A.: Industrial Robots. Industrial Press, New York (2009)Google Scholar
  13. 13.
    Gołda G., Kampa A., Paprocka, I.: Simulation model of robotic manufacturing line. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Position Papers of the 2016 Federated Conference on Computer Science and Information Systems, Gdańsk, Poland, 11–14 September 2016, pp. 107–113. Polskie Towarzystwo Informatyczne, Warszawa (2016)Google Scholar
  14. 14.
    Gołda, G., Kampa, A., Paprocka, I.: Analysis of human operators and industrial robots performance and reliability. MPER 9(1), 24–33 (2018)Google Scholar
  15. 15.
    Greenwood, A., Pawlewski, P., Bocewicz, G.: A conceptual design tool to facilitate simulation model development: object flow diagram. In: Proceedings of the 2013 Winter Simulation Conference, pp. 1292–1303 (2013)Google Scholar
  16. 16.
    Groover, M.P.: Work Systems: The Methods, Measurement and Management of Work. Prentice Hall, Upper Saddle River, NJ (2007)Google Scholar
  17. 17.
    Hägele, M., Nilsson, K., Pires, J.N.: Industrial robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics. Springer, Berlin (2008)CrossRefGoogle Scholar
  18. 18.
    Hansen, R.C.: Overall Equipment Effectiveness. Industrial Press, USA (2005)Google Scholar
  19. 19.
    Harriott, C.E., Adams, J.A.: Modeling human performance for human–robot systems. Rev. Hum. Factors Ergon. 9, 94 (2013). http://rev.sagepub.com/content/9/1/94CrossRefGoogle Scholar
  20. 20.
    Ingemansson, A., Bolmsjo, G.S.: Improved efficiency with production disturbance reduction in manufacturing systems based on discrete-event simulation. J. Manuf. Technol. Manag. 15(3), 267–279 (2004)CrossRefGoogle Scholar
  21. 21.
    Kamble, P.G., Hebbal, S.S.: An overview of manufacturing enterprise modeling and applications for CIM environment. Contemp. Eng. Sci. 3(5), 201–214 (2010)Google Scholar
  22. 22.
    Kampa A., Gołda G., Paprocka I.: Discrete event simulation method as a tool for improvement of manufacturing systems. Computers 6, 10 (2017).  https://doi.org/10.3390/computers6010010CrossRefGoogle Scholar
  23. 23.
    Kampa, A.: Planning and scheduling of work in robotic manufacturing systems with flexible production. In: Skołud, B (ed.) Hueristic Methods of Project and Production Scheduling. Journal of Machine Engineering, vol. 12, no. 3, pp. 34–44 (2012)Google Scholar
  24. 24.
    Krenczyk, D.: Automatic Generation Method of Simulation Model for Production Planning and Simulation Systems Integration. Advanced Materials Research, vol. 1036, pp. 825–829. Trans Tech Publications, Switzerland (2014)Google Scholar
  25. 25.
    Krenczyk, D., Olender, M.: Production planning and control using advanced simulation systems. Int. J. Mod. Manuf. Technol. 6(2), 38–43 (2014)Google Scholar
  26. 26.
    Krenczyk, D., Kempa, W., Kalinowski, K., Grabowik, C., Paprocka, I.: Production planning and scheduling with material handling using modelling and simulation. In: Slatineanu, L., Nagit, G., Dodun, O., Merticaru, V., Coteata, M., Ripanu, M.I., Mihalache, A.M., Boca, M., Ibanescu, R., Panait, C.E., Oancea, G., Kyratsis. P. (eds.) The 21st Innovative Manufacturing Engineering & Energy International Conference. IMan E&E, Iasi, Romania, EDP Sciences, Les Ulis.  https://doi.org/10.1051/matecconf/201711209015 (2017)CrossRefGoogle Scholar
  27. 27.
    Kulanek, R.: Press Excellence Center COMAU, i.e. robotics press line at the world level. http://www.robotyka.com/wiadomosc.php/wiadomosc.1256/press-excelence-center-comau-czyli-robotyzacja-linii-pras-na-swiatowym-poziomie, 31 Jan 2018
  28. 28.
    Nof, S.Y.: Handbook of Industrial Robotics. Wiley, New York (1999)CrossRefGoogle Scholar
  29. 29.
    Robinson, S.: Conceptual modelling for simulation part I: definition and requirements. J. Oper. Res. Soc. 59(3), 278–290 (2008)CrossRefGoogle Scholar
  30. 30.
    Sharma, P.: Discrete-event simulation. Int. J. Sci. Technol. Res. 4(04), 136–140 (2015)Google Scholar
  31. 31.
    Smith, D.J.: Reliability, Maintainability and Risk: Practical Methods for Engineers. Elsevier, Oxford (2005)Google Scholar
  32. 32.
    Vis, I.F.A.: Survey of research in design and control of automated guided vehicle systems. Eur. J. Oper. Res. 170(3), 677–709 (2006)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Woods, D.D.: Modeling and predicting human error. In: Elkind, J., Card, S., Hochberg, J., Huey, B. (eds.) Human Performance Models for Computer-Aided Engineering, pp. 248–274. Academic Press, New York (1990)CrossRefGoogle Scholar
  34. 34.
    Xie, C., Allen, T.T.: Simulation and experimental design methods for job shop scheduling with material handling: a survey. Int. J. Adv. Manuf. Technol. 80, 233–243 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Grzegorz Gołda
    • 1
  • Adrian Kampa
    • 1
    Email author
  • Damian Krenczyk
    • 1
  1. 1.Silesian University of TechnologyGliwicePoland

Personalised recommendations