Advertisement

Invention and Evaluation of Transistors and Integrated Circuits

  • Iraj Sadegh Amiri
  • Hossein Mohammadi
  • Mahdiar Hosseinghadiry
Chapter

Abstract

This chapter covers a brief review of the general configuration and outline of the book. First of all, the history of invention and evaluation of transistors and integrated circuits are briefly presented. After that, the concept of scaling, Moore’s law, and international technology roadmap for semiconductor (ITRS) are explained. Finally, the research objectives, the scope of the work, plan, and the outline of the book are expressed.

Keywords

Transistors Integrated circuits Moore’s law Semiconductors 

References

  1. 1.
    S. Okamura, History of Electron Tubes (IOS Press, Amsterdam, 1994)Google Scholar
  2. 2.
    J.E. Lilienfeld, Method and apparatus for controlling electric currents. Google Patents, 1930Google Scholar
  3. 3.
    D. Crawley, K. Nikolic, M. Forshaw, 3D Nanoelectronic Computer Architecture and Implementation (CRC Press, Boca Raton, 2004)CrossRefGoogle Scholar
  4. 4.
    O. Heil, Improvements in or relating to electrical amplifiers and other control arrangements and devices. British Patent 439, 1935, pp. 10–14Google Scholar
  5. 5.
    A. Facchetti, T. Marks, Transparent Electronics: From Synthesis to Applications (Wiley, Chichester, 2010)CrossRefGoogle Scholar
  6. 6.
    W. Schottky, Halbleitertheorie der sperrschicht. Naturwissenschaften 26, 843–843 (1938)CrossRefGoogle Scholar
  7. 7.
    J.W. Orton, Semiconductors and the Information Revolution: Magic Crystals That Made IT Happen (Elsevier Science, Amsterdam, 2009)Google Scholar
  8. 8.
    J. Bardeen, W.H. Brattain, The transistor, a semi-conductor triode. Phys. Rev. 74, 230 (1947)CrossRefGoogle Scholar
  9. 9.
    D. Kahng, M. Atalla, Silicon-silicon dioxide field induced surface devices, in IRE Solid-State Device Research Conference, 1960Google Scholar
  10. 10.
    G. Hellings, K. De Meyer, High Mobility and Quantum Well Transistors (Springer, Berlin Heidelberg, 2013)CrossRefGoogle Scholar
  11. 11.
    C.A. Mead, Schottky barrier gate field effect transistor. Proc. IEEE 54, 307–308 (1966)CrossRefGoogle Scholar
  12. 12.
    W. Hooper, W. Lehrer, An epitaxial GaAs field-effect transistor. Proc. IEEE 55, 1237–1238 (1967)CrossRefGoogle Scholar
  13. 13.
    B. Lojek, History of Semiconductor Engineering (Springer, Berlin Heidelberg, 2007)Google Scholar
  14. 14.
    F. Wanlass, C. Sah, Nanowatt logic using field-effect metal-oxide semiconductor triodes, in 1963 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. IEEE, 1963, pp. 32–33Google Scholar
  15. 15.
    G. Moore, Cramming more components onto integrated circuits. Electron. Mag. 38, 82–85 (1965)CrossRefGoogle Scholar
  16. 16.
    J.P. Colinge, J.C. Greer, Nanowire Transistors: Physics of Devices and Materials in One Dimension (Cambridge University Press, Cambridge, 2016)CrossRefGoogle Scholar
  17. 17.
    S.E. Thompson, S. Parthasarathy, Moore’s law: the future of Si microelectronics. Mater. Today 9, 20–25 (2006)CrossRefGoogle Scholar
  18. 18.
    C.H. Suh, Analytical model for deriving the threshold voltage of a short gate SOI MESFET with vertically non-uniformly doped silicon film. IET Circ. Device Syst. 4, 525–530 (2010)CrossRefGoogle Scholar
  19. 19.
    W. Lepkowski, M.R. Ghajar, S.J. Wilk, N. Summers, T.J. Thornton, P.S. Fechner, Scaling SOI MESFETs to 150-nm CMOS technologies. IEEE Trans. Electron. Device 58, 1628–1634 (2011)CrossRefGoogle Scholar
  20. 20.
    W. Lepkowski, S.J. Wilk, T.J. Thornton, Complementary SOI MESFETs at the 45-nm CMOS node. IEEE Electron. Device Lett. 36, 14–16 (2015)CrossRefGoogle Scholar
  21. 21.
    K.E. Bohlin, P.A. Tove, U. Magnusson, J. Tiren, Complementary silicon MESFET technology. Electron. Lett. 23, 205–206 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Iraj Sadegh Amiri
    • 1
    • 2
  • Hossein Mohammadi
    • 3
  • Mahdiar Hosseinghadiry
    • 4
  1. 1.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Pasargad Higher Education InstituteShirazIran
  4. 4.Allseas EngineeringDELFTThe Netherlands

Personalised recommendations